MARCH 1884

© Copr. 1949-1998 Hewlett-Packard Co.

HEWLETT-PACKARD JOURNAL

Technical Information from the Laboratories of Hewlett-Packard Company

MARCH 1984 Volume 35 @ Number 3
Contents:

A New 32-Bit VLS| Computer Family: Part l—Software, by Michael V. Hetrick and Michael
L. Kolesar Sophisticated software had to be developed to take full advantage of the features
offered by HP’s new VLS| computer chip set.

HP-UX: Implementation of UNIX on the HP 9000 Series 500 Computer System, by Scoft
W. Y. Wang and Jeff B. Lindberg This enhanced version of UNIX lets a user “port" software
from one HP 9000 Computer to another and use software developed on other systems.

An Interactive Run-Time Compiler for Enhanced BASIC Language Performance, by
David M. Landers, Timothy W. Wilson, Jack D. Cooley, and Richard R. Rupp This technique
adds compiled language performance while retaining BASIC's friendly interactive features.

A Local Area Network for the HP 9000 Series 500 Computers, by John J. Balza, H.
Michael Wenzel, and James L. Willits LAN 9000 allows clustering of HP's latest computer
workstations for computer-aided design and sharing of data and resources.

Data Communications for a 32-Bit Computer Workstation, by Vincent C. Jones By
emulating asynchronous terminals, the Model 520 can exchange data with other systems.

A General-Purpose Operating System Kernel for a 32-Bit Computer System, by Dennis
D. Georg, Benjamin D. Osecky, and Stephen D. Scheid This kernel provides a clean
interface between an underlying sophisticated hardware system and high-level user systems.

The Design of a General-Purpose Multiple-Processor System, by Benjamin D. Osecky,
Dennis D. Georg, and Robert J. Bury To coordinate the operation of symmetric processors
requires some special hardware characteristics and hardware/software tradeoffs.

An |/O Subsystem for a 32-Bit Computer Operating System, by Robert M. Lenk, Charles
E. Mear, Jr., and Marcel E. Meier This subsystem for Series 500 Computers has two main
components—a file system and a set of device drivers.

Authors

Viewpoints—Coping with Prior Invention, by Donald L. Hammond What do you do when
you find out that someone else invented your new technology first?

In this Issue:

pemterteacasne The solar system on this month's cover represents the system software for the HP 9000
Il Series 500 Computers. We first told you about the HP 9000 in our August 1983 issue,
which was devoted to the advanced technology that makes the Series 500 possible. You
may recall reading about the HP 8000's five VLSI (very large-scale integration) chips—among
them a 32-bit, 450,000-transistor central processor chip—made by a high-tech integrated
circuit process called NMOS Ill. To help manage the heat generated by all those densely
packed circuits, a new kind of circuit board, called a finstrate, was developed. The finstrates
in each HP 9000 Series 500 Computer are contained in a lunchpail-sized module that holds
up to three central processors. These technological developments make it possible to put on an engineer's
desk a computer that has more power than some mainframe computers—"mainframe” being the name applied
only to the largest computers. The HP 9000 Model 520 is the desktop mainframe. Models 530 and 540 are,
respectively, rack-mount and cabinet versions designed to serve multiple users.

Although the lunchpail-sized module is the beginning, between it and that desktop mainframe is a great
deal of development in both hardware and software. This month's issue covers the system software develop-
ment. In May, we'll cover the hardware development, and in future issues, we'll carry articles on significant
applications software packages. In this issue you can read about operating systems, languages, input/output,
networking, and multiprocessor management. An unusual aspect of the HP 9000 Series 500 is that there are
two levels of operating system. What the user sees is either an advanced version of the HP BASIC system
or an HP version of Bell Laboratories’ UNIX operating system. Underlying those systems is the Series 500's
SUN operating system, whose name gave us the idea for our cover photo. The SUN concept proved invaluable
in the development of the two user operating systems.

-R. P. Dolan

Editor, Richard P. Dolan e Asseciate Editor. Kenneth A. Shaw e Art Director, Pholographer, Arvid A: Danielson lllustrators, Nancy S. Vanderbloom,
Susan E. Wright » Administrative Services, Typography, Anne S. LoPresti, Susan E, Wright e European Production Supervisor, Henk Van Lammeren

2 HEWLETT-PACKARD JOURNAL MARCH 1984 @ Hewlett-Packard Company 1984 Printed in LU.S.A.

© Copr. 1949-1998 Hewlett-Packard Co.

A New 32-Bit VLSI Computer Family:

Part Il—Software

Based on HP's proprietary 32-bit VL.SI NMOS-III technology,
the HP 9000 Series 500 Computers use local area
networking and HP-UX, HP's enhanced version of UNIX™
An advanced version of BASIC that uses run-time compiling
is available on the Model 520 integrated workstation.

by Michael V. Hetrick and Michael L. Kolesar

ment of a single-chip 32-bit processor’ fabricated with

a new VLSI process technology called NMOS I11.% This
new technology was also used to develop four other 32-bit
chips that, coupled with the design of a special copper-
cored circuit board called a finstrate, enable a powerful
multiprocessor 32-bit computer system to be packaged
within a module no larger than a loaf of bread. The design
of the five chips, the module, and the finstrate, and the
NMOS-III process were discussed in last August's issue,

The compact module, called the Memory/Processor Mod-
ule, forms the heart of a desktop engineering computer
workstation, the HP 9000 Computer, introduced by HP in
1983. Now known as the HP 9000 Model 520, it contains
a 5%-inch flexible disc drive, has four I/O slots, and has a
choice of either a color or monochromatic 13-inch CRT
display. Depending on the choice of the twelve finstrates
possible in the Memory/Processor Module, up to three
CPUs, three I/O processors, or 2.5M bytes of RAM can be
installed. Available options include an internal thermal
printer and an internal 10M-byte hard disc memory,

A sophisticated internal operating system, called SUN,
was developed to coordinate this compact multiprocessor

HP 9000 Computers

= ®

IN 1981 HEWLETT-PACKARD described the develop-

computer system. A high-performance interactive high-
level language system is required to allow a user to take
full advantage of the features included in the Model 520.
An enhanced version of BASIC and a run-time compiling
technique were developed. This version was designed as
a superset of the BASIC used on earlier HP desktop comput-
ers so that users could easily port existing software to the
Moaodel 520.

In late 1983, the HP 9000 family of computers was de-
fined to include some earlier 16-bit technical desktop com-
puters,” now known as the Series 200, and alternative pack-
ages for the Memory/Processor Module, which with the
Model 520, form the Series 500. To simplify the porting of
software developed by other companies to the HP 9000
family, HP-UX, an enhanced version of UNIX™, was de-
veloped. LAN 9000 was developed to provide local area
networking.

Fig. 1 depicts all current HP 9000 models. The primary
distinction between the Series 200 and Series 500 Comput-
ers is in their microprocessor, or central processing unit
(CPU), and the ensuing system design. All Series 200 mod-
els are based on Motorola's 16/32-bit 68000 microprocessor,
while all Series 500 models use HP’'s proprietary 32-bit

UNIX |5 a US. rrademark of Bell Laboratories

Series 500
© HP's NMOS-lll VLSI Chip Set
Architecture

®» 32-Bit

Fig. 1. The HP 9000 family of
computers includes the Series
200 and the Series 500 Comput-
ers. The Series 200 is based on
the 16/32-bit 68000 micropro-
cessor and the Series 500 Is
based on HP's proprietary 32-bit
VLSINMOS-Ill chip set. The Series
200 s lower in cost and the Series
500 has higher performance. Pro-
grams developed in BASIC on the
Series 200 can be ported to the
Model 520 of the Series 500 for
decreased computation time and
other performance advantages.

MARCH 1984 HEWLETT-PACKARD JOURNAL 3

© Copr. 1949-1998 Hewlett-Packard Co.

Contrasting Project Management

The relative magnitudes of the BASIC and HP-UX projects
created interesting and contrasting software management tech-
niques. BASIC, being relatively small in code size by today's
standards (less than one megabyte) was implemented entirely
within HP's Fort Collins Systems Division (FSD). A development
environment known as MODCAL, which ran on previous-gener-
ation desktop computers, was an effective tool for code develop-
ment. Since the project was executed by a few engineering
groups in one department, coordination among the design team
was extremely efficient,

HP-UX development, on the other hand, was much larger in
scope; it resulted in approximately 10 megabytes of system code.
Features such as multiple languages, graphics, networking, and
fundamental program development tools were required. HP en-
tities outside of FSD had the expertise to contribute in some of
these key areas. Thus, two California organizations—the Com-
puter Language Laboratory (CLL) and the Engineering Produc-
tivity Division (EPD)—along with the Colorado Networks Opera-
tion (CNO) provided FSD with major software subsystems. CLL
produced the FORTRAN and Pascal compilers, EPD developed
HFP's well-known two- and three-dimensional graphics libraries,
and CNO provided most of the data communications and net-
working software.

FSD ported the UNIX™ commands and created the System |l|
UNIX interface to the existing Series 500 operating system. FSD
was also responsible for coordinating the entire software develop-
ment and integrating all subsystems into a cohesive product.

As the HP-UX asynchronous communications software be-
came functional, it was used to transmit messages and internal
software updates between divisions. FSD and CNO capitalized
on high-speed local area network prototype hardware and soft-
ware to update local systems electronically,

Thus, many HP-UX software subsystems became key develop-
ment tools even as they were being created. (The UNIX command
set, C, FORTRAN, and Pascal compilers, and SCCS, the source
code control system, are additional examples.) Their everyday
use not only contributed to our development productivity, but
also served as a prime example of how internal use of what will
become a product improves the product's overall quality in a
way that is not otherwise possible.

*UNIX s a U.S. trademark of Bell Laboratories
-Michael V. Hetrick
-Michael L. Kolesar

CPU chip set mentioned earlier. Highly compatible system
software spans the lower-cost Series 200 and higher-perfor-
mance Series 500 workstations to provide a broad price/per-
formance product family. BASIC is offered on all but the
Model 530 and Model 540; HP-UX is offered on all but the
Model 216 and Model 226. A standard HP Pascal develop-
ment environment also appears on all Series 200 madels.
This issue discusses the development of the Series 500
software systems with the exception of the multitasking,
graphics, and I/O subsystems for Model 520 BASIC. They
will be discussed with the hardware design of the Series
500 in the May issue, which will conclude the story of the
development of the HP 9000 Series 500 Computers.

Software Organization

The software for the Series 500 is modular and is easily
decomposed into smaller building blocks. The design kept

4 HEWLETT-PACKARD JOURNAL MARCH 1984

the internal SUN operating system clearly distinct from
the code for the BASIC language. This separation was
necessary to provide the foundation for a true multilingual
system. For example, we knew that the Series 500 with
virtual memory would be an excellent FORTRAN engine,

The separation or layering of the software made it neces-
sary to define a powerful and flexible set of operating sys-
tem entry points to support the real-time event-driven
BASIC language needs. This set of underpinnings also
serves as the basis for the HP-UX system.

The SUN operating system hides most of the hardware
details from the higher-level subsystems. The initial ver-
sion of SUN supports the Model 520’s demanding 700-
keyword BASIC language with its new run-time compiler.
The support for multiple CPUs and /O processors was
designed in from the beginning. The BASIC language sys-
tem supports memory-resident programs and data, but does
not support virtual memory. Besides the BASIC language
mainframe code, several option packages extend its capa-
bilities by adding two- and three-dimensional color
graphics, HP’s IMAGE data base management and query
system, extended I/O, extended mass storage with multiple
disc formats, multitasking, advanced programming such as
matrix manipulations, and /O drivers for a variety of inter-
faces and devices. BASIC's highly integrated human inter-
face causes it to be provided only on the Model 520, the
integrated desktop version of the Series 500. Special
hardware in the Model 520's display unit is used to achieve
excellent performance for BASIC's text and graphics win-
dow facilities. The Model 520 keyboard contains special
control keys used in BASIC, such as RUN, STOP, STEP, and
PAUSE, in addition to the keys normally found on a terminal
keyboard.

We chose UNIX as the best available environment to
support FORTRAN and other standard languages. A second
version of the SUN operating system was built using the
modules from the first version, but with the important virtual
memory feature added. The diagrams in Fig. 2 and Fig. 3
show the similarity of the BASIC and HP-UX systems. This
leverage paid off handsomely, because almost from the
beginning, the terminals, discs and printers worked reliably

BASIC Usar Programs

HP 883545
BASIC

Sedes 200 | o

BASIC Language Subsystem

SUN Operating System
Varsion | (no virtual memory)

Fig. 2. Block diagram of the BASIC language system for the
HP 9000 Model 520 Computer.

© Copr. 1949-1998 Hewlett-Packard Co.

for HP-UX. Also, the real-time and multiprocessor design
carried over to HP-UX to give it a more solid basis for
performance extensions, device /O, and real-time than
could be achieved with a ported system.

A thin laver of code maps the HP-UX intrinsic calls into
the underlying SUN intrinsics. The same HP Structured
Directory Format (SDF) hierarchical file system used by
BASIC is also used by HP-UX. It is almost indistinguishable
from the System III UNIX file system except that it is more
reliable and less susceptible to corruption from power fail-
ures and system crashes. This layered design was a concern
because it could lead to deviations from the UNIX seman-
tics defined by Bell Laberatories. Therefore, a set of exten-
sive and comprehensive kernel test programs was devised to
determine if any detectable differences had been introduced.
With only a small additional effort, the layered kernel
passed the validation tests. The same set of test programs
is being used to verify the Series 200 HP-UX kernel and
future releases of the Series 500 kernel.

The commands and libraries offered are selected from
both the Bell Laboratories and the University of California
at Berkeley versions of UNIX. Those most needed for pro-
gram transport and development are included. The three
user program languages offered are C, Pascal, and FORTRAN
77. The calling sequences allow mixing of languages at the
subroutine level and the sharing of all library routines.

The definition of HP-UX includes not just compatibility
with Bell Laboratories’ UNIX System III, but also HP exten-
sions. The current system offers IMAGE data base manage-
ment, AGP/DGL graphics, and local area networking based
on ARPANET TCP/IP and Ethernet protocols with both file

HP-UX User Programs
Fowmm—n'i HP Pascal | c | Shell
. HPUX Subsystem
Multilingual Libraries

IMAGE
Data Device 24w 241

Base

HP-UX {Bell Systam i) intrinsic Semantic Laysr

SUN Operating Sysiem
Version Il (paged and segmented virtual memory)

Muli- | Dynamic | Oymamic | SDF
cPu |

| Dynamic | Vo
Process Virtual Format | @uffer Drivers
Memory File | Management

Support | Management
PO | Management S\fl!«ﬂ"E

L Ll
32-8it VLS| Hardware System

DMA Channels

C10 interface Cards

Fig. 3. Block diagram of the HP-UX operating system for the
HP 9000 Series 500 Computers.

and process services.

References

1.]. Beyers, etal, “A 32b VLSI Chip,” Digest of Technical Papers,
1981 IEEE International Solid-State Circuits Conference, THAM
9.1,

2. J. Mikkelson, et al, *An NMOS VLSI Process for Fabrication of
a 32b CPU Chip,” ibid, THAM 9.2.

3. Hewlett-Packard Journal, Vol. 33, no. 5, May 1982.

The development of the BASIC language subsystem for the
HP 8000 Model 520 Computer had one primary goal—to allow
this new workstation to be a complete functional replacement
for the HP 9835 and HP 9845 Computers' while achieving at
least ten times the performance of the HP 9845 by using HP's
new 32-bit NMOS-III custom VLSI chip set.? In addition, new
features were needed to keep pace with the new applications
that such a capable machine would encompass. The develop-
ment schedule for this top-of-the-line BASIC machine ran in paral-
lel with the chip set development.

The design team decomposed these high-level goals into many
challenging technical goals, uppermost being to provide a
growth path for HP's current BASIC language customers through
a high degree of compatibility, and to add new functions suited
to the power of the new hardware. The BASIC language was
unified and extended in cooperation with the Series 200 Comput-
ers® language team while retaining a high degree of program
compatibility with the earlier HP 9835 and HP 9845. Thus, pro-
grams from either generation of machines move easily onto the
Model 520. Almost no differences are notable between Series
200 BASIC and Model 520 BASIC. Even though most HP 9845
staterments are retained, the uniformity of the evolving language
dictated that some differences would result. An optional translator
for HP 9845 programs to achieve a more precise semantic match
is available:

The major technical contribution to support the performance
goals was a run-time compiler for the BASIC language. This
compiler appears to the programmer to be the same as our

The Development of a BASIC Language Subsystem

traditional interpretive environment, preserving such features as
tracing, line stepping, execution of statements from the keyboard
and manipulation of a running program’s variables. A running
program can be paused, lines can be added, deleted, or mod-
ified, and execution then continued from its point of suspension.
All of these features are still supported even though the user's
program is not interpreted, but compiled into object code and
directly executed.

The resulting high-productivity programming environment uses
execution modes and trap instructions built into the new proces-
sor. Parallel chip set and software development allowed many
specialized instructions to be added 1o the processor in support
of these interactive features as well as the language itself. These
included some of the traps, the string manipulation set, and bit
manipulation. The resulting BASIC language system has over
700 keywords that encompass significant data base manage-
ment, graphics and |/O capabilities.

The new compiled environment retains the event-driven, real-
time program control of the HP 9845 and HP 9000 Model 226
Computers. Program branching and flow are tied to both
hardware and software events through the use of ON statements.
These statements define the asynchronous branching that is to
occur when selected events happens.

Also in support of the performance objectives, the new machine
uses the emerging |EEE binary floating-point mathematics stan-
dard instead of the traditional decimal mathematics. In addition
to making use of the fast microcoded floating-point on the micro-
processor, binary mathematics is used in new algorithms for

MARCH 1084 HEWLETT-PACKARD JOURNAL 5

© Copr. 1949-1998 Hewlett-Packard Co.

computing transcendental and other functions which are both
faster and more accurate.

Multitasking was added to improve the user's access to the
machine and to use the improved processor power. Simultaneous
program execution and development are now supported. Up to
60 user processes can be run simultaneously. These processes
share the system resources and peripherals. For communciations
and synchronization they have "named-event” signaling. Memory
resident volumes and files were added for rapid shared-data
access. File locking allows for atomic (indivisible) update of a
shared file.

The system architecture provides for multiple identical CPUs.
This feature was incorporated into the operating system so that
the power of many processors could be directed at runable
tasks. The fundamental design supports these multiple CPUs as
homogeneous and anonymous computing resources. Since all
CPUs have symmetric access to all I/O, there is no need to
introduce master-slave relationships. The only externally visible
effect of adding more CPUs is increased throughput.

Full-screen editing and multiple user-defined windows in both
graphics and alpha displays were added to improve the human
interface. Both public and private windows are supported, includ-
ing arbitrary window overlap and last update priority display.
These windows act much like sheets of paper on your desk, with
the topmost sheets occluding the sheets below where they over-
lap. The window structure is dynamic—even the system message
areas can be relocated anywhere on the screen.

An example of new hardware capability that mapped into a
new set of language features is the internal, nonvolatile, real-time
clock, which facilitates using time to schedule program events.
The new file system also uses the clock to time-stamp files as
they are created or changed and the lister dates hard copy.

The graphics definition was extended to support multiple input
devices with fracking and event capture, and the transformation
pipeline includes both two- and three-dimensional modeling
modes.

Development Tools

A very accurate emulation program that mimicked the execu-
tion of the new machine's instruction set was written for execution
on the distributed HP 9845 workstations. This software emulation
was so accurate that it took only ten minutes from the time the
first chip set was delivered to the software team until the system
was up and running a BASIC program in compiled code on the
new Model 520 hardware.

The instruction set* of the new VLS| CPU chip provided the
hooks for a highly interactive symbolic debugging tool. This de-
bugger provided a simple transition between running and step-
ping of systems programs. Procedure, line, and assembly level
stepping are selected on the fly. Program flow is displayed sym-
bolically at the appropriate level. Variables can be referenced
symbolically.

Pascal was chosen as the systems programming language
with extensions for separate modular compilation to support large
team program development. This new language is called MOD-
CAL for MODular PasCAL. MODCAL is very similar to Wirth's
Modula ll, but was designed independently by HP. For the pro-
gramming environment, the UCSD (University of California at San
Diego) p system was selected because it was written in Pascal,
was easily ported to the HP 9845, and had the other tools, such
as editors, that were needed.

Another important decision was to separate the BASIC lan-
guage from its operating system support. Clear separation of
the operating system provided code that could be leveraged for
the HP-UX project and reduced the cost of maintaining the Model
520 BASIC system. The underpinnings for the HP 8000 multiple-
CPU HP-UX system are the same operating system modules
used for BASIC.

Over 750K bytes of code are in the BASIC system for the
Model 520, forming the most powerful program development
environment ever provided for an HP desktop computer system.
The resulting system's speed, graphics, and real-time, event-
driven I/O capability make it a very powerful engineering tool. A
large number of HP 9845 and Model 226 programs have been
easily moved onto the Model 520. Performance gains average
50 to 100 times the performance of the HP 98458 Computer and
more than 10 times the performance of the HP 9845, option 200,
for computation-limited tasks. The same compulational tasks av-
erage 15 times faster than on the BASIC version of the Model
226 Computer.

Acknowledgments

Chris Christopher was the lab manager and Bill Eads was the
section manager and temporarily managed the graphics team.
Jeff Eastman developed MODCAL, managed the initial graphics
team, and chose the CORE style pipeline. Scott Wang managed
the tools team responsible for the interactive debugger and MOD-
CAL optimizations, Dave Maitland was responsible for early proj-
ect management of the design team, Denny Georg and Dan
Osecky were the principal operating system designers and the
implementors of the emulation tool, Dave Landers made the run-
time compiler a reality, and Dan Osecky was the primary architect
of the operating system support for multiple CPUs.

References

1. Hewlstt-Packard Journal, Vol, 29, no. 8, April 1878

2. JW. Beyers, ER. Zeller, and S.D. Seccombe, "VLSI Technology Packs 32-Bit Com-
puter System into a Small Package," Hewlett-Packard Journal, Vol 34, no. 8. August
1983,

3. Hewfett-Packard Journal, Vel. 33, no. 5, May 1982.

4. J.G. Fiasconaro, "Instruction Set for a Single-Chip 32-Bit Processor,” Hewlett-Pack-
ard Journal, Vol 34, no. 8, August 1983,

-Michael L. Kolesar
-Jack D. Cooley

6 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

HP-UX: Implementation of UNIX on the
HP 9000 Series 500 Computer Systems

by Scott W. Y. Wang and Jeff B. Lindberg

tem kernel has been layered on top of an existing

operating system kernel for the HP 9000 Series 500
Computer Systems. The mapping of UNIX functional re-
quirements onto the capabilities of the underlying operat-
ing system is discussed in this article, along with the im-
plementation of UNIX commands and libraries. These
pieces of UNIX, along with other extensions added by HP,
make up the HP-UX operating system.

The HP-UX operating system is compatible with Bell
Laboratories’ System III UNIX, and supports most of the
standard UNIX commands and libraries. A number of ex-
tensions are available, including
= FORTRAN 77
» HP Pascal
m C
» HP's AGP three-dimensional and DGL two-dimensional
graphics subroutines
LAN 9000, an Ethernet-compatible 10M-bit/s local area
network
The vi visual editor
Virtual memory
Shared memory
HP's IMAGE data base management system
Support of symmetric multiple CPUs,

u N IMPLEMENTATION of the UNIX™ operating sys-

HP-UX Operating Environment

There are three levels of software in a UNIX system:
commands, libraries, and kernel intrinsics (Fig. 1). The com-
mands are user-level programs which can call libraries or
kernel intrinsics. Some commands are provided with the
operating system as standard utilities. One example is the
command interpreter, or shell. Commands can also be writ-
ten as normal user programs by the user. Libraries are also
user-level code, but can be called only from a programming
UNIX is a U S trademark ol Bell Laboratories.

Fig. 1. UNIX consists of three levels of software—commands,
libraries, and kernel intrinsics.

language such as FORTRAN or C. Kernel intrinsics can be
called (normally as functions) from user programs or li-
braries, and provide a fundamental set of operating system
operations.

UNIX Kernel Overview

A standard UNIX kernel provides support for 1/O, file
system access, process management, real-time clock access,
memory allocation, etc. The set of kernel intrinsics is fairly
small and simple; only basic operations are supported by
the kernel. For example, file manipulation operations such
as copying files are done by commands. The command
interpreter shell is another capability that is implemented
in a user program instead of inside the kernel.
Process Management. The UNIX kernel supports the crea-
tion of asynchronous processes that run in the background
while the user executes other interactive programs in the
foreground. Intrinsics are provided for the creation, termi-
nation, and synchronization of processes. Special events

| Typical HP-UX Commands

Commands in HP-UX are run by entering the name of the
command. For instance, to list the contents of the current working
directory, enter Is. This causes a program by that name (which
may be located in one of several default directories) to be loaded
into memory and to begin executing. Other examples of HP-UX
commands are:

Change the working directory to the
directory indicated by dirpath

pwd Prints the full path name (filename) of
the current working directory

cddirpath

vifilename Invoke the visual editor to edit file
filename

rmfilename Remove file filename

cp filename destdir Copy file filename into directory destdir

catfilename Print the contents of file filename

Printthe number of lines, words and

characters contained in file filename.

i weis the word count command and its
input, in this case, is the output of the
cat command (due to the pipe created
byl).

Is—1 List the cantents of the current work-

ing directory. The —1is an option

that tells the Is command to emit
additional information. Most com-
mands accept one or more oplions.

catfilename | we

-Michael L. Connor

MARCH 1984 HEWLETT-PACKARD JOURNAL 7

© Copr. 1949-1998 Hewlett-Packard Co.

are noted by sending signals to one or more processes from
other processes or from the kernel. The kernel manages
identification fields, such as process ID, user ID, and group
ID, which uniquely identify a process or group of processes.
The exec intrinsic loads a user program (code and data)
into memory from an executable file. The memory model
of UNIX is very simple. It consists of the user’s program,
an execution stack, and a dynamic heap which can be
extended or contracted via a kernel intrinsic.

File Manipulation. The UNIX file system is built around
a hierarchical directory structure, allowing a directory to
contain other directories as well as normal files. Kernel
intrinsics are provided to create files, directories, and spe-
cial files (devices that are in the filename space). The kernel
also supports creating and deleting links (alternate names)
to files and getting or setting file access modes. A significant
feature is the ability to mount a separate disc volume logically
onto a directory in an on-line volume. This means that all
on-line volumes are part of a single directory hierarchy.
File Access. A single set of /O intrinsics provides transpar-
ent access to files, devices, or the standard input of other
processes. A program normally does not know whether its
standard input is coming from a file, a device, or another
process via an interprocess pipe. Standard operations are
provided, including read, write, open, close and status.
Special device control is provided via the joctl intrinsic.
Miscellaneous. Several other features are supported by the
standard UNIX kernel, such as real-time clock access, log-
ging accounting information at process termination, and
profiling the execution of user programs. The profiling and
accounting facilities have not yet been added to HP-UX.

SUN Operating System Kernel

When the HP 9000 project began, the operating system
designers took a different approach from that used on HP's
previous desktop computers. Even though the first HP 9000
language system was to be an extension of the BASIC lan-
guage system of the HP 9845 Computer, an objective of the
operating system design was to allow other languages in
later versions of the product. The system software was
designed in a modular, layered fashion (see Figs. 2 and 3
on pages 4 and 5). A central operating system kernel provides
a high-level interface to the hardware and machine architec-
ture, while other subsystems provide more specific func-
tions layvered on top of this kernel. This operating system
kernel, called SUN, is described in detail in the article on
page 28.

SUN is written mainly in MODCAL, an enhanced version
of Pascal. MODCAL supports information hiding* via mod-
ules, an elegant error recovery mechanism, and systems
programming extensions such as absolute addressing. A
small part of SUN is written in assembly language. The
SUN kernel is not visible to the user; instead, it relies on
upper-level subsystems such as BASIC or HP-UX to provide
a user interface. The major pieces of the SUN operating
system kernel handle power-on initialization and memory
and process management, and coordinate the file system,
drivers, I/O primitives, real-time clock, and interprocess
messages.

“information hiding Is a software design approach where the inner workings of an individual
section are kept "hidoen” from other sections. This allows a section to be changed or
updated with minimal concern about its elfects on other sections

8 HEWLETT-PACKARD JOURNAL MARCH 1984

An unusual feature of the file and I/O system is the ability
to add new directory format structures, device drivers and
interface drivers. These modules can be added without
affecting the existing SUN kernel code.

Some key pieces are missing from SUN by design, notably
the human interface and program loader. The BASIC sys-
tem provides its own human interface code, which uses
the integrated CRT and keyboard of the Model 520, the
desktop version of the HP 9000 Series 500 Computers. HP-
UX provides a terminal-style human interface to communi-
cate with the user through the integrated CRT and keyboard
as well as through normal terminals. HP-UX and BASIC
also provide their own program loading facilities.

HP-UX Kernel Strategy

The basic strategy of the HP-UX implementation is to
layer the HP-UX kernel definition on top of the SUN kernel.
The exact System III UNIX semantics and syntax are kept,
but the HP-UX intrinsics are implemented using SUN ker-
nel support instead of porting the Bell Laboratories kernel
implementation to the Series 500.

A layer of code called the HP-UX layer resides just above
(and in some cases beside) the SUN kernel, as does the
BASIC subsystem. However, BASIC and HP-UX are mutu-
ally exclusive; only one can be loaded at a time.

The HP-UX layer performs any necessary transforma-
tions between UNIX formats and the corresponding SUN
formats (e.g., the real-time clock format). It calls procedures
in SUN whenever appropriate, but still has full access to
the hardware and architecture when needed. The HP-UX
layer maintains a number of higher-level data structures
to manage HP-UX user processes and user resources.

This layering strategy has a significant impact on the
implementation detail of the HP-UX layer. For example,
MODCAL is used instead of C as the implementation lan-
guage. However, user-level code written for System III
UNIX will run on HP-UX, unless it depends on certain
internal implementation details such as the directory for-
mat structure or invisible internal system data structures.

The advantages of this layering approach come in two
main categories—leverage and opportunities for contribu-
tion. A large portion of hardware-dependent code was al-
ready written for the Series 500 and its peripherals. Using
the SUN kernel made it unnecessary to rewrite this code
for HP-UX. Existing modules used include device and in-
terface drivers—especially significant because of the com-
plexity of the HP-IB (IEEE 488) and the new HP CS-80
discs—low-level memory management, power-up code,
process scheduler, architecturally dependent utility rou-
tines, and other machine-dependent code.

SUN has a number of features that are not present in
UNIX; these features provide opportunities for
HP-UX to make a contribution over other UNIX implemen-
tations. These include real-time performance in the area
of interrupt response time and process switching, support
for multiple CPUs, reliability in the face of system errors,
support for variable-size independently managed dynamic
memory segments, semaphores, and low-level device /O
capability. Also, HP's IMAGE data base management sys-
tem was already implemented on top of SUN for the BASIC
system. This code was ported to the HP-UX environment

© Copr. 1949-1998 Hewlett-Packard Co.

What is UNIX™?

The popularity of the UNIX™ operating system developed by
Bell Laboratories has been increasing since it became opera-
tional in 1971. Today. it is rapidly becoming the most popular
operating system for mid-sized computers and runs on numerous
machines made by different manufacturers. There have even
been those that have likened UNIX's role in operating systems
today to FORTRAN's rale in computer languages some twenty
years ago.

UNIX was developed by Ken Thompson and Dennis Ritchie
of Bell Laboratories. Both men had been working on a project
called Multics (an acronym for multiplexed information and com-
puting service), which was a large multiuser operating system
that was eventually cancelled by Bell Laboratories. From there,
Thompson, and then Richie, went on to develop UNIX. As you
might expect, many of the more desirable features found in Mul-
tics were incorporated in the UNIX design. In fact, even the UNIX
name was adopted from a playful twisting of "Multics."

As the years went by, the UNIX systems within Bell Laboratories
evolved until version six (V6) was developed about 1975. This
version became quite popular in a number of universities around
the world, including the University of California at Berkeley (UCB).

Version seven was released in 1978 and quickly replaced V6
in most installations. This version is the base for most of the
commercial UNIX look-alikes, of which the Xenix system de-
veloped by Microsoft is probably the best known. It is also the
version on which UCB built their popular enhanced versions of
UNIX. Each UCB version released contained a few enhance-
ments over the previous releases. UCB's versions are designated
by xBSD, where x is the version number and BSD stands for
Berkeley Software Distribution. 4.2BSD is the most recent.

In early 1982, Bell Laboratories released System Ill UNIX. This
version is the base for HP-UX (HP's version of UNIX), although
HP-UX also incorporates some of the nicer features found in
UCB's 4.1BSD version,

System V UNIX was released by Bell Laboratories in 1983,
Bell is guaranteeing that all of their future UNIX versions will be
compatible with System V.

UNIX Popularity
Exactly why UNIX has become so popular is a hard guestion

to answer, but the reasons probably include:

® Simplicity. The UNIX system can be broken into fairly small
independent pieces. Each piece can be comprehended indi-
vidually and at a pace that is comfortable for a user. Few users
ever need to learn all the features provided by UNIX,

» Power. The pieces of the system can be connected synergis-
tically and manipulated at execution time, the 1/O can be redi-
rected, the output of one process can be connected to the
input of another (forming a “pipeline” of arbitrary length), pro-
cesses can be executed in foreground or background, a com-
mand list can be developed and then executed when desired
and as often as desired, elc.

= Flexibility, Pieces of the UNIX system are easily added, re-
placed, or deleted. System reconfiguration is quick and
straightforward.

w Software. Bell Laboratories, Hewlett-Packard, and a lot of other
companies and individuals have put a lot of effort into develop-
ing a large software base that runs in the UNIX environment.

UNIX is a U.S. trademark of Ball Laboratories.

m Ease of poring. Most of the UNIX system is written in a
machine-independent manner. It has been ported to a num-
ber of different computer architectures with relatively few
problems

Features
UNIX has many features. Some of them are:

= The shell. The shell is a program that provides the interface
between the user and the UNIX system. It is a command in-
terpreter that takes input from the user and executes the re-
quested commands. It can also take input from an ASCII com-
mand file, which is generally referred to as a "shell script.”
When a command is executed, it can be passed arguments,
have its standard /O files redirected, and/or be placed in the
background, all through provisions built into the shell. The
shell also has flow control structures that allow conditional and
multiple execution of command lists. Because of the flexibility
of UNIX, the shell can be replaced by a different program. In
fact, UCB has chosen to do just that and provides their own
version of the shell called the C shell.

= The C Language. C was developed concurrently with UNIX
at Bell Laboratories. It is a medium-level language with many
of the features found in Pascal and other high-level languages.
It provides a programmer with a lot of power and few con-
straints. Most implementations of the UNIX kernel and most
of the UNIX commands are written in C.

m Other languages. Currently HP-UX on HP's HP 9000 Series

500 and Series 200 Computers offers compilers for Pascal

and FORTRAN 77 in addition to C.

Full set of commands. Commands to maintain the UNIX system

and the file system, editors, text processors, and numerous

other commands are included in HP-UX, The popular vi editor
from UCB is included in this set.

= Arich set of library routines. These include routines to compute
cormmeon math functions, to perform formatted 1/O, to access
kernel intrinsics, and, on the HP 9000 Series 500 Computers,
routines to manipulate virtual memory objects, to do DGL/AGP
graphics, and to access an IMAGE data base.

» Data communication support. System |l and other versions
of UNIX provide a set of UNIX-to-UNIX copy (uuecp) services
to allow the user to pass files from node to node in a UNIX
network. A sophisticated electronic mail system has been im-
plemented by using these services. To these, the HP 9000
Series 500 Computers add a local area network (LAN 8000),
general terminal emulator capabilities, and remote job entry.

= Source code control system (SCCS). This is a set of commands
that helps the programmer keep track of changes to source
files.

Further Reading

1. H McGiltan and R Margan, Introducing the UNIX System, McGraw-Hill, 1983. A
good tutorial

2 A Thomas and J. Yates, A User Guide to the UNIX Systemn, OSBORNEMeGraw-Hill
Berkeley, 1982. Another good tutarial

3. Bell Systern Technical Journal, Vol 57, na. 6, Part 2, July-August 1978 The enfire
issue Is dedicated to UNIX of aboul version seven

4. HP-UX Reference Manual, Hewlett-Packard Publication 09000-80004. A good refer-
ence, but not easy for a novice to understand

5 HP-UX Selected Articles, Hewlett-Packard Publication 97089-90002 Nineteen arti-
cles on some of the large components found in UNIX

6. S A Bourne, The UNIX System, Addison-Wesley, 1983 A good introduction

-Michael L. Connor

MARCH 1984 HEWLETT-PACKARD JOURNAL 9

© Copr. 1949-1998 Hewlett-Packard Co.

to provide this important HP standard data base capability.

An important concern was the performance of a layered
implementation; the risk was that conversion between the
SUN format and the HP-UX format would increase operat-
ing system overhead. The experience actually observed
after the product was completed was that the HP-UX layer
itself is responsible for approximately 10% of the CPU time
used by the kernel, and nearly all of that time is spent
doing useful work such as loading programs. This means
that SUN is a fairly good match for the HP-UX requirements,
because little time is wasted on conversion between SUN
and HP-UX formats.

Matching SUN and HP-UX

This section describes the areas of the SUN operating

system that were changed or augmented to support the
requirements of HP-UX. Only areas that are important to
mapping the UNIX semantics onto the original SUN kernel
are described in depth.
File System. There was already a good match between the
SUN operating system and HP-UX in the hierarchical direc-
tory structure of the file system. The existing directory
format was modified to fit HP-UX semantics rather than
implement the standard UNIX disc format in MODCAL,
The fundamental operations such as read, write, open, and
close were already supported in a satisfactory manner in
SUN; no significant changes to these were necessary.

However, the file system itself was the area that required
the largest changes in SUN. One of the biggest additions
was the support of device files, special files that map de-
vices such as printers or terminals into the same name
space as regular files, The SUN file system expected device
and file accesses to be made separately. Special checks had
to be made for special file types; the new device file code
performs operations for device files equivalent to those
originally performed only for regular files.

Another large change was support for mounting disc vol-
umes onto an on-line directory so that all accessible files
and directories are part of a single directory hierarchy.
Again, special code was added to check each directory
access; if the directory has another volume mounted on it,
the access is redirected to the root directory of the mounted
volume.

The third area of major change was file access protection
semantics. The UNIX read/write/execute and user/group/
other mechanisms used to control access to files were not
originally in the SUN file system protection scheme. This
could have been added, along with the standard UNIX disc
format structure, to a separate directory format module,
since SUN supports multiple directory format structures.
However, the characteristics of the existing format were so
close to those desired that the SUN format and protection
scheme were adapted to the HP-UX requirements instead.

Changes were made in the SUN file system to support
pipes and FIFO (first-in, first-out) files. In the early versions
of HP-UX, pipes were implemented in the HP-UX layer.
However, they have been moved inside the SUN file system
for performance reasons. A number of minor HP-UX file
system operations had to be added to SUN. These include
changing the owner of a file, reading or changing file access
modes, and duplicating an open file descriptor.

10 HEWLETT-PACKARD JOURNAL MARCH 1984

Some operations are performed in the HP-UX layer.

These include parsing multilevel path names, managing
the user's open files table, and enforcing file size limits on
extending files.
1/0. In the area of device I/O, the existing SUN I/O system
was a very good match for the needs of UNIX. Virtually no
changes were made to the /O primitives that provide the
interface to the backplane and 1/0O processor, the bus
bandwidth management code, the drivers for interface
cards, or the disc and tape device drivers.

The major changes came in the internal and external
terminal support. The external terminal driver is based on
the existing serial interface driver, but adds UNIX tty seman-
tics such as type-ahead, line buffering, mapping carriage
return/line feed to newline, and sending the interrupt and
quit signals. The Model 520 Computer’s integrated keyboard
and CRT device control code is based on the work done
for the BASIC system’s human interface. But the functional
operation of the integrated ‘‘terminal'’ had to be completely
redone to be compatible with HP terminals.

Memory Management. Because of the simple memory
model of HP-UX, the memory allocation intrinsics are eas-
ily supported on most operating systems, including the
SUN kernel. The major changes in the SUN memory man-
agement system were required by the addition of virtual
memory and shared memory, which are extensions rather
than semantic requirements of UNIX. The HP-UX layer has
the responsibility of keeping track of the user’'s memory
use and deallocating this memory when a process or pro-
gram terminates.

Program Loading. No explicit function for loading and
executing programs is present in the SUN operating system,
but the underlying support needed is there. The file system
is used (with minor changes) to find and read the program
file, and the memory management system provides the
mechanism for allocation of code and data segments. No
major changes were required in the SUN kernel to support
program loading.

The HP-UX layer manages shared code segments, which

allow multiple processes to share a single copy of the code.
The HP-UX layer also handles relocation of code and data
segments at load time and meets the segment attribute re-
quirements requested by the object file format.
Process Management, The HP-UX process management in-
trinsics are supported fairly well by the SUN kernel, but
two areas required a significant effort: fork and signal. The
fork system call creates a new process in the exact image
of the calling process. It returns to both the parent and
child processes, just after the fork call, at the point where
the function return value distinguishes the child from the
parent. Creating an exact copy of a process is not a typical
operation supported by normal operating systems, includ-
ing the SUN kernel.

At the SUN level, code was added to support the “clon-
ing"” of a process. The cloning operation allocates memory
for the child process and initializes SUN modules for the
new process. It is also responsible for duplicating the con-
tents of the parent’s segment table in the child’'s segment
table and creating an exact image of all the parent’s seg-
ments in the child’s address space, including virtual mem-
ory segments and the stack segment.

© Copr. 1949-1998 Hewlett-Packard Co.

The HP-UX layer then initializes the new process. This

includes allocating an HP-UX process control block, copy-
ing some fields from the parent’s process control block,
and initializing other unique fields such as process ID and
parent process ID. It also increments use counts on shared
objects such as shared code segments and open files. Fi-
nally, the HP-UX layer returns the appropriate value to the
parent (child's process ID) and to the child (zero).
Signal Implementation. The implementation of signal, a
mechanism for interprocess event notification and excep-
tion reporting, was a significant portion of the HP-UX layer
development. SUN had no explicit support for sending
asynchronous signals between processes, but did have most
of the tools necessary to implement this feature.

One tool is the ability of subsystems to install trap han-

dlers for most classes of traps possible on the Series 500
Computers. Signal processing is initiated by triggering an
MI (machine instruction) trap in the target process, which
causes the Ml trap handler to be entered on the next machine
instruction executed. This handler is responsible for pro-
cessing the signal received and taking the specified action.
This can be calling a user-specified signal handler, ter-
minating the process, or just ignoring the signal.
Other Process Management. The process scheduler met
the requirements of HP-UX in the original SUN implemen-
tation, but has been improved to allow dynamic process
priority adjustment to reward interactive processes. (It is
currently being enhanced to suspend low-priority pro-
cesses during heavy system loads.) SUN supports the cre-
ation of special system processes that can provide specific
system services. These system processes communicate
with user processes and each other via SUN's mailbox-style
interprocess messages. Also, a sophisticated set of
semaphore operations is provided for synchronization of
all processes in the system. This is especially important in
a multiple-CPU system; merely disabling interrupts does
not ensure exclusive access to a shared data structure, be-
cause other processes may be running simultaneously on
other CPUs.

The following process management functional areas are
implemented in the HP-UX layer:
® Higher-level support of fork such as allocation and in-

itialization of a process control block for the new HP-UX

process

® Higher-level support of signal, including sending and re-
ceiving signals, and specifying action to be taken on
receipt of a signal

® Management of user, process, and group 1Ds

» Process termination, including deallocation of resources
owned by the user process

m Wait for a signal or for termination of a child process

m Management of HP-UX process control blocks.

The functional areas listed below are completely sup-
ported by the SUN kernel, except for those changes noted.
= Power-up
Multiple-CPU support
® Trap handling
® Real-time clock: the HP-UX layer performs the conver-

sion between SUN time format and HP-UX time format
® Alarm clock: the HP-UX layer creates a system process

that wakes up each second to see if any alarm signals

need to be sent
® CPU times; a minor change was made to the timer inter-

rupt service routine to increment the CPU time used by

the current process.
Upper-Level Software Strategy

Working in parallel with the SUN and HP-UX kernel
design groups was another group of software engineers
who were responsible for the upper-level commands and
libraries. The UNIX system from Bell Laboratories contains
more than 300 commands and over 200 library subroutines.
Consisting of more than 300,000 lines of C source lines,
these constitute the bulk of the UNIX system. The majority
of HP-UX upper-level software on the Series 500 Computers
is based on these UNIX System Il commands, plus several
from the 4.1BSD version of UNIX from the University of
California at Berkeley (UCB).

For implementation priorities, the upper-level software
team first categorized the commands and libraries into dif-
ferent groups based on their usefulness. For example, in-
itialization and file manipulation commands were all in
the first group. Useful tools were in the second group and
other commands and libraries, such as those used for text
processing, were in the third group. Then the C source
code of the first two groups was studied in some detail
using a C cross referencer to determine which system intrin-
sics and libraries were used. The data resulting from the
study was stored in an HP 9845 IMAGE data base from
which many useful reports were produced. For example,
a system intrinsic implementation priority list was gener-
ated based on the highest-priority commands to guide the
kernel group in their implementation. As new system in-
trinsics were brought up, the upper-level software team
was able to determine from the data base what additional
commands could be brought up with the newly available
intrinsics.

Another IMAGE data base was used to keep track of all

commands and libraries in terms of implementation prior-
ity, responsible engineer, porting status, source origin, etc.
This proved to be very useful for managing the project and
keeping other departments informed about the status of
each command.
Porting Commands and Libraries. Four major tools were
necessary to port the upper-level software: a C-to-HP-9000
cross compiler, an assembler, a linker, and a cross compi-
lation machine. The upper-level software team used a re-
motely accessible VAX/750 running UCB UNIX as the cross
compiling environment. Other tools to move files to and
from the VAX/750 were developed as necessary.

After the initial system was up and running, the major
focus was to make the C compiler resident on the Series
500 by cross compiling it. We had a resident environment
two months later. From that point on, all development
work was done on a Model 520 Computer running the
latest (sometimes experimental) kernel. The upper-level
software development system then grew from one single-
user system to two multiuser systems linked with a local
area network.

The majority of the commands and libraries were ported
over to the Series 500 with little or no modification, that
is, most of them ran after compilation. However, the follow-
ing types of changes were necessary.

MARCH 1984 HEWLETT-PACKARD JOURNAL 11

© Copr. 1949-1998 Hewlett-Packard Co.

HP-UX: A Corporate Strategy

| With the introduction of HP-UX on the HP 9000 Series 500
Computers, Hewlett-Packard has made a strong commitment to
the use of an enhanced version of UNIX™ as a standard operating
system for its new computer products. Through this commitment,
HP is striving to eliminate unique software attributes that make
end-user programs difficult to “port” from one computer to
another. Programmers can now design their software to run on
an array of HP machines, concentrating on modularizing and
scaling their applications to best suit each computer's price/per-
formance characteristics.

|
‘ Why UNIX?

Since any operating system standard would simplify the porting
process and improve programmer productivity, why was UNIX
selected as the heart of HP's software strategy?

‘ UNIX is gaining wide acceptance as an industry standard for
16-bit and 32-bit minicomputers. Its popularity is partially be-
‘ cause it has been easy to implement on a variety of processors
| and computer architectures. This portable characteristic made
| UNIX an ideal choice as a compatible operating system for the
distinct architectures of current HP 3000 members: the 16/32-bit

68000 microprocessor-based Series 200 Computers (Models
| 220 and 236) and HP's proprietary 32-bit VLSI-based Series 500

Computers (Models 520, 530, and 540). UNIX is also planned

for future members of the HP 9000 family.
' The popularity enjoyed by UNIX has a synergistic effect. Sofi-
ware applications are being designed for the UNIX environment
at an increasing rate, which in turn encourages more UNIX im-
plementations. Most of this software will run on HP-UX, thereby
making HP’s computers more attractive to a larger audience.
Furthermore, UNIX is studied and taught in most major univer-
sities. Today's computer science graduates will eventually influ-
ence or become those who select computers for commercial
and scientific use. UNIX-based products are likely to receive
strong consideration during the selection process.

What Is HP-UX?
HP-UX is a combination of Bell Laboratories’ UNIX operating
systemn, portions of the University of California at Berkeley (UCB)

UNIX is a U.S. trademark of Bell Laboratories
eKernel, Libraries
oC Compiler, vi
®0Other Commands
#(System V Semantics)

. Common Bell

| & / o and UCB

eSystem |l Kernel, Libraries, 700
and Command \“‘w
®(System V Semantics) prs

#Graphics, Games
®Experimental Functions
I eSeldom-Used Functions

| Key:

sMemory Control

() Definition in eLocal Area Network
progress oGraphics, Data Base Management,
FORTRAN, Pascal
Not HP-UX ®(Localization)

#(Device /0, Real-Time)

12 HEWLETT-PACKARD JOURNAL MARCH 1984

implementation of UNIX and Hewlett-Packard software enhance-
ments. Through UNIX, HP-UX facilitates easy importation of UNIX-
derived programs and offers a consistent, powerful program de-
velopment environment. Complementary extensions address the
Manufacturer's Productivity Network (MPN), HP's view of how
computer systems can be used in manufacturing organizations
to imprave productivity,

Rather than implementing every function of Bell Laboratories
System IIl UNIX, features were included based on their impor-
tance in porting standard software or their absolute program
development value. Using these guidelines, a compatibility
hierarchy was developed in which kernel services became a
“must,” library subroutines a "high want," and commands a
"want."

As a result of this approach, HP-UX includes all System |l
kernel intrinsics and all libraries except for a handful of graphics
subroutines. More than 125 of the most useful System Il com-
mands and a small but important number of UCB commands
are also offered.

To satisfy customer reguirements, enhancements covering
programming languages, graphics, data base management, de-
vice and instrumentation /O, local area networking, and friendly
user interfacing are being standardized. These extensions, which
appear as additional kernel intrinsics, libraries, and commands,
will bridge the gap between HP's HP-UX and non-HP-UX computers.

Additional enhancements assist in migrating applications soft-
ware from current proprietary HP operating systems to HP-UX.
Ore of these tools, the Applications Migration Package (AMP),
converts the HP 1000 Computer's RTE calls to HP-UX calls. AMP
revisions are pianned as HP-UX is expanded to meet real-time
control requirements.

New software features are not the only form of HP enhance-
ments. On-going training allows sales and technical support or-
ganizations to provide complete services before and after sales.
Easy-to-read tutorials and reference manuals aid both novice
and experienced users. Exhaustive R&D software testing ensures
reliable operation and minimal downtime.

Since HP-UX is planned for many future HP computers, HP
will leverage investments already made in these important sup-
port areas. By avoiding the massive reinvestments continuously

v

eis, Other Commands

eNetwork, Real-Time
Support

#(C Shell, Mail)

eMemory Control
#Graphics, Games
e®Hardware Dependencies
#System V Conflicts
eSeldom-Used Functions

Fig. 1. influence of Bell Lab-
oratories, UCB, and HP exten-
sions on the direction of the HP-UX
definition.

© Copr. 1949-1998 Hewlett-Packard Co.

required of new software systems, HP can concentrate onimprov-
ing all aspects of HP-UX in the future.

HP-UX Standards Enforcement

Compliance with the HP-UX standard is enforced through com-
prehensive sets of validation programs. Automated test programs
monitor proper operation of all kernel intrinsics. System Il li-
braries, two-dimensional and three-dimensional graphics li-
braries, and the FORTRAN and Pascal compilers. As the stan-
dard evolves, additional validation programs will be developed
to ensure consistency across all HP-UX computers.

Overall management of the standard is the ongoing responsi-
bility of the HP-UX Steering Committee. Consisting of represen-
tatives from several HP divisions, this committee meets monthly
to resolve pertinent HP-UX issues and to review the status of the
various HP-UX working groups. These groups; also with broad
divisional representation, cover technical, marketing, documen-
tation, and customer support Issues in more detail. Each division
works through its representatives to propose additions or
changes to the standard.

Future Direction

Perhaps the most critical issue in establishing the future course
for HP-UX is its degree of compatibility with Bell Laboratories
and UCB. While 4.2BSD UNIX (Revision 4.2 Berkeley Software
Distribution) is currently the superior version, Bell is developing
improved versions that could eventually surpass 4.2BSD in capa-
bility and reliability. In addition, four microprocessor manufactur-
ers” intend to offer System V, Bell's latest UNIX version, on their
microprocessor products. System V can potentially become the
most affordable UNIX and thus the UNIX of choice for portable
application programs.
*Intel, Motorola, National Semiconductor, and Zilog

In consideration of these factors, the Bell System [l version
has been chosen as the base standard. The compatibility hierar-
chy will determine which portions of System V and its successors
are HP-UX candidates.

Extensions beyond the Bell versions can be expected if they
fail to mest HP requirements in a timely fashion. However, we
prefer 1o adopt an existing UNIX-based implementation (if one
exists) before embarking an an original design project. A poten-
tially rich source of enhancements currently under investigation
is UCB's 4.2BSD version. We anticipate adding such UCB fea-
tures as the C shell, mailer, and selected kernel intrinsics.

Microsoft's Xenix, with its large installed base and potentially
rich source of UNIX applications programs, could influence the
HP-UX standard. Since Xenix and HP-UX are selectively adding
Bell System V and UCB features to the same System |1l definition,
conformance between the two systems is likely.

Fig. 1 illustrates the major influence of the HP extensions and
the Bell releases on the HP-UX direction. It also recognizes UCB
as a promising contributor of additional functionality.

In support of low-cost computer systems, we are examining
methods of subsetting HP-UX without sacrificing compatibility or
easy growth to the higher-performance systems. Code compac-
tion and reduction techniques for both the operating system ker-
nel and the disc resident commands are being considered. An
exciting technigue under investigation is a high-performance dis-
tributed HP-UX operating system, which-allows individua! work-
stations to rely totally on shared network peripherals. Thus, the
cost per system is dramatically reduced, but local processing
power is maintained.

HP-UX will be modified to support several European languages
and the 16-bit Kanji character set. Thus, localized application
program solutions will be possible.

-Michael V. Hetrick

A new system intrinsic entry point mechanism was de-
veloped because the kernel was written in MODCAL and
the rest of the system was in C.

Some data structures contained in the C header files
needed to be modified to match the HP-UX layer data
structures. (Header files contain data and structure decla-
ration statements for C programs.) The commands that
needed these header files were examined in detail to see
if modification was necessary.

A few commands were rewritten completely because the
kernel was not the original standard kernel. For example,
fsck, the file system integrity checker and maintainer,
was rewritten because the SDF (structured directory for-
mat) file system is physically different from the UNIX
file system. The process status command ps was modified
extensively because of data structure differences.
Another example was the mknod command which creates
special files to communicate with /O devices. It was
modified to match the UNIX semantics to HP-IB I/O de-
vices. However, all the commands were kept as compat-
ible as possible with System III UNIX commands.

The Series 500 supports IEEE floating-point format; as
a result, the UNIX math library was replaced with HP's
own implementation.

Twenty-one new commands were implemented that
apply to the Series 500-based HP-UX. These deal primar-
ily with machine-dependent features such as disc boot
area management, disc initialization, setting virtual

memory parameters, and system installation and update.
The handling of DC600 tape cartridge data on HP's new
(CS-80 discs also required special support.
Problems During Porting. The problems encountered in
porting the commands and libraries can be categorized in
two areas—architecturally dependent and architecturally
independent. Architecturally independent problems were
mostly anomalies found in the original UNIX code. We
logged over 281 new bug reports during the port project.
Over 60% of these bugs were fixed. The others were either
classified as not worth fixing or waiting to be fixed.
Architecturally dependent problems were usually
caused by dereferencing of nil pointers or dependency on
the direction of stack growth. On the VAX/750 implemen-
tation of UNIX, a nil pointer dereference returns a zero.
On the HP 9000 Series 500 HP-UX, a system trap occurs.
This architectural dependency is relied on in many places
in the standard UNIX commands and libraries, and each
of these needed to be corrected. These usually manifested
themselves in a memory fault error message. Fortunately,
this error was relatively easy to fix in the source code.
The stack grows towards high memory (up) on the Series
500 and down on the VAX/750. For example, the printf sub-
routine in the standard I/O library can have a variable
number of parameters and the pointer used to access the
parameters on the stack is decremented rather than in-
cremented. Other architecturally dependent features in-
cluded the byte order swap of the VAX/750 hardware where

MARCH 1984 HEWLETT-PACKARD JOURNAL 13

© Copr. 1949-1998 Hewlett-Packard Co.

low and high bytes are reversed. This made reading cpio
archive format tapes from the VAX/750 a chore in the be-
ginning. Now HP-UX defines a new —p option to the cpio
command which does the byte swap.

The upper-level software team did not have a user-level
debugger available to debug the C programs. Instead, the
kernel-level HP 9000 debugger was used to debug the com-
mands. It was cumbersome to set up the initial breakpoint,
but quite effective after that. (A user-level symbolic debug-
ger is being developed.)

Shared Libraries. The Series 500 architecture supports
shared code segments, thus allowing the implementation
of a special shared library for major portions of the standard
C library. That is, there is only one copy of the library in
the system shared by all system commands that are linked
in the standard C library. (The shared library feature is not
currently available to user programs.) This saved typically
7K bytes of code space for each command (just about all
of the commands used the C library). This, in turn, im-
proved load-time performance and saved disc space.
SCCS and the Build Process. UNIX is touted as one of the
best program development environments available, be-
cause it provides many software engineering tools. The
source code control system (SCCS) is one such tool that
the upper-level software team took advantage of throughout
the project life cycle. The SCCS was brought up and used
as soon as all kernel support was available. The Bell
Laboratories System III source code was put under SCCS
as the baseline and all upper-level software changes were
built on top of it. Each upper-level software team member
adhered to a simple set of rules that applied to the access
and update of the controlled source. This proved valuable
for day-to-day software development, providing who,
when, how, and why information about code changes.

SCCS maintains revision numbers to allow access control
and retrieval of any version of the source code. It also
supports checksums of the source files to check for corrup-
tion. This was important since code development was done
in parallel with the file system development and the
checksum is a simple physical integrity check. SCCS was
indispensable later during quality assurance testing and
the code freeze period just before each major system release.

System build scripts were written to manage the compi-
lation of all the commands and libraries from the SCCS
source directory automatically. The build procedure, along
with the scripts, was able to handle compiler, assembler
and linker updates, getting the source, and compiling the
system in proper sequence. This was important for system-
wide changes such as object file format changes or major
updates in the compiler or other tools. The scripts also
controlled the target file system structure, setting file own-
erships, access permissions, etc. They also managed the
SCCS update revision level of each system build such that
any change occurring after the build started would be at a
higher level and would not be included in the current build
even if the build process had to be restarted for some reason.
The build scripts evolved through the life of the project
and became a major tool for system releases. The final build
of the 3.3M-byte system took around 17 unattended hours
to complete.

14 HEWLETT-PACKARD JOURNAL MARCH 1984

Compatibility

The upper-level software porting experience indicated a
high degree of compatibility between the HP-UX layered
kernel and the UNIX System III kernel. Out of 126 ported
commands from System III, 57 required no modification
at all, 44 required less than 10 lines of modifications, 16
required between 10 and 30 lines of modifications, and 9
required more than 30 lines of modifications. Most modifi-
cations were to fix bugs. These commands do not include
development tools such as a compiler, an assembler, and
a linker, nor do they include UCB UNIX commands.

Extensive effort was made to ensure compatibility with
Bell Laboratories' System III UNIX. First, a “minimum
touch” strategy on the System III source code was used.
The design team did whatever was necessary to make the
commands and libraries work, but beyond that they did as
little modification as possible. Temptations to clean up the
code were strongly discouraged. Each reported bug was
evaluated to determine whether it should be fixed and if
so, how.

Second, validation suites® were used to ensure compati-
bility with System III. The priority for the validation suites
was to validate the kernel first, then the libraries, and fi-
nally the commands. 100% of the kernel intrinsics were
validated. A significant effort was invested in the kernel
validation suite. It was run after each new kernel was built.
92% of the subroutine libraries have validation tests and
all are incorporated into an automatic test suite. 22% of
released commands have validation tests. The validation
suites were written with verification of the functionality
in mind rather than exhaustive quality assurance testing.

The automatic validation test suite is organized for ease
of use. There are two types of tests—one related to the root
user” and the other related to the typical user. The automat-
ic test suites were provided to the software system integra-
tion team for testing commands and libraries with other
major subsystems.

Acknowledgments

We would like to thank the following people for their
contributions to the HP-UX effort. Fred Clegg at HPDA (HP
Design Aids) spearheaded the UNIX effort in HP. Rich Ham-
mons and Richard Tuck, then at HPDA, did the early work
on the C cross compiler, assembler, and linker. Bill Wil-
liams at HPDA worked on the kernel validation suite.
Everyone associated with the upper-level software effort
worked on commands one way or another: Debbie Bartlett
worked on the libraries and build scripts and managed the
system build process, Xuan Bui worked on the command
and automatic validation suites, Mike Connor was the lead
engineer and did the initial work on the MODCAL and C
compilers and assemblers, the shell, and the fsck sub-
routine, Kathy Harris worked on the SCCS and then did
the subsequent work on the C compiler and the assembler,
John Harwell was the system manager and worked on the
teio and command validation suites, Ken Lewis did the
system performance characterization, J.L. Marsh worked
on the vi editor, systems integration, and installation tools,
Mike McCarthy worked on the MODCAL and HP-UX lin-
kers, Marty Osecky did the subsequent work on the assem-

TA suite here refers to a set of programs for a common purpose
*Referred to as a super user in UNIX, a user exempt from normal security checks

© Copr. 1949-1998 Hewlett-Packard Co.

bler, Don Rosenbaum and Rick Dow from HP’s Colorado
Networks Operation (CNO) worked on RJE and the wucp
and cu datacomm commands, Alan Silverstein did the work
on the HP 9000 debugger, system manager, tool builder,
and systems integration, Ron Tollev worked on system per-
formance characterization, and Helen Vu worked on the
schema and library validation suites.

The following people contibuted to the HP-UX kernel
effort: Mike Berry, HP-UX file system, Barb Flahive, pipes,
magnetic tape and printer support, Milan Hanson, bug re-
porting data base, Mark Hodapp, extended memory intrin-
sics, Karl Jensen, program loading, Ken Martin, IMAGE
data base management system, and Peter Notess, terminal

and integrated CRT and keyboard drivers.

We would also like to thank Jack Cooley for managing
the C compiler and system performance characterization
efforts. Dave Graham from HP’s Data Systems Division
(DSD) managed the FORTRAN and Pascal compiler efforts,
Ken Heun managed the initial HP-UX kernel effort, Jim
Willits and Vince Jones from CNO managed the local area
network and datacomm efforis, Mike Kolesar managed the
systems integration and release process, Eileen McGinnis
from DSD managed the AGP/DGL graphics effort, Denny
Georg and Dan Osecky managed the SUN kernel VM effort,
and Mike Hetrick managed the entire HP-UX program.

An Interactive Run-Time Compiler for
Enhanced BASIC Language Performance

by David M. Landers, Timothy W. Tillson, Jack D. Cooley, and Richard R. Rupp

9000 Model 520 Computer, the project team was

faced with a major challenge. To take full advantage
of the performance available in the Model 520 from the
new 32-bit NMOS-III VLSI microprocessor,’ BASIC had to
be implemented as a compiled language. Using traditional
compiler technology, this would mean giving up many of
the interactive features so popular with current HP 9845
users. The challenge was to develop a new compiler tech-
nology that would support these interactive features while
maintaining the performance advantage of a compiler.

The breakthrough came in the form of two articles on
“throwaway compiling,” explained in two articles—one
by P.J. Brown* and one by J. Hammond." The throwaway
or run-time compiling technique compiles each line the
first time it is executed. As more of the program is compiled,
the performance approaches that of a traditional compiled
system. If the program runs out of memory, the current
object code is discarded (hence the term “‘throwaway com-
piling”’) and the incremental compilation is restarted at the
next line to be executed.

The authors were looking for a way to run programs
efficiently on machines with limited memory space, but
the throwaway compiling technique looked like it could
be adapted for a run-time compiler that would provide the
desired interactive features. If the object code could be
thrown away during the execution of a program and rebuilt
without restarting, it could also be thrown away at arbitrary
times such as when the user modifies the program. Within
limits, the program reconstructed after throwaway could
be different from the program before throwaway. This

a T THE BEGINNING of the BASIC project for the HP

would support the pause, edit, and continue feature. Given
that an intermediate form of the program is available to
reconstruct the object code at run time, this intermediate
code could be designed to contain enough information to
support the interactive debugging features. Finally, if the
object code could be constructed one line at a time and
added to the object code at run time, the code for a single
line could be constructed and immediately executed as
well. This would allow asynchronous execution of single
lines from the keyboard during program execution.

Enhanced BASIC Language
The BASIC language that Brown implemented as part of
his research was a very minimal subset, whereas Model
520 BASIC is a substantial language with several significant
features beyond those supported by most other BASIC sys-
tems. Could these more advanced features be implemented
in a run-time compiling environment? That was the ulti-
mate challenge facing the design team. Some of the lan-
guage features that presented the biggest challenge were:
Subprograms similar to FORTRAN routines, but support-
ing recursion. Both subroutine and function subpro-
grams are supported.
® A COMMON statement similar to that used in FORTRAN.
Both blank and labeled COMMON are supported. EQUIVA-
LENCE is not supported.
® ON conditions; a mechanism for handling asynchronous
interrupts within a BASIC program. The interrupt service
routines are part of the program, accessible via GOTO,
GOSUB or CALL statements. Normal program flow can be
altered at any line boundary in response to one of these

MARCH 1884 HEWLETT-PACKARD JOURNAL 15

© Copr. 1949-1998 Hewlett-Packard Co.

interrupts. Examples of possible interrupts include
keyboard keystrokes, interrupts from /O devices, soft-
ware signals, and real-time clock events.

m Structured programming constructs such as IFTHEN/
ELSE, WHILE and REPEAT loops, and CASE.

= A REDIM statement that can dynamically change array
bounds.

® Dynamic variable allocation/deallocation via the ALLO-
CATE and DEALLOCATE statements.

User Code Structure

The internal representation and management of the
user’s program in the Model 520 BASIC system provides
insight into a complex and fascinating software architec-
ture. This representation is called the program chain, which
is a collection of contexts,* each of which represents a
user-level subprogram. A context can either be compiled,
or in a form from which the original source code can be
reconstructed, called intermediate code (icode). Compiled
contexts are created using the COMPILE command (not to
be confused with the code compiled by the incremental
run-time compiler), and are discussed in greater detail
below. The icode contexts can be listed and modified at
the source level by the user; the name comes from the fact
that the source is represented internally in a form that is
midway between source and object code. The icode con-
texts also contain the incrementally compiled object code
produced by the run-time compiler as the program runs.
Intermediate Code Contexts. An intermediate code context
consists of two machine data segments: the icode segment
and the symbol table segment (see Fig. 1).

The context header holds information that describes the
context and its relationship to the other contexts in the
program. Also in the context header is a pointer to the
corresponding symbol table segment and to the next and
previous contexts in the program chain. The static object
code contains many small code sequences needed to sup-
port running BASIC programs, including code to handle
ON conditions, end the program, handle input responses,
and other tasks. This static object code is always there, and
the incrementally compiled object code branches to it when
in need of some help for one of these tasks.

“The reader should be aware thal other articles in this issue may define the term "contex!”
differently

Icode Segment

Context Header
(Includes static
object code)

Formal Schema Area

Symbol Table Segment

Symbol Table Header

Symbol Table Area

Intermediate Code Area Prerun Object Code

ncrementally Compiled

Code Free Space

i
Statement

Free Space Segment Transfer Table

Segment Transfer Table

Fig. 1. Theicode contextcontains two segments as shown.

16 HEWLETT-PACKARD JOURNAL MARCH 1984

The formal schema area holds a compact description of
the parameter list for this subprogram. It describes the
number and types of the parameters and is useful for sup-
porting the call linkages. The icode area holds the represen-
tation of the lines of the user’'s subprogram. Each line of
source corresponds to one line of icode. Whenever the user
modifies the intermediate code, the object code gets thrown
away. The intermediate code can then grow or shrink with-
out having to move the object code. The incrementally
compiled statement object code is the object code for the
statements in the context. As the program runs, the object
code builds up in this area. The segment is extended if
necessary to make room for more object code.

The free space contains all the unused space in each
segment; all the other areas are directly adjacent. The object
code for a keyboard command goes into this area. Since a
command is a one-time event, and not part of the program,
the object code for that command disappears after the com-
mand is executed. If there is not enough empty space to
hold the command’s object code, the segment is increased
to make room.

The segment transfer table holds the pointers to proce-
dures for calls into and out of a segment. During incremen-
tal run-time compilation, this table grows and may cause
a segment extension.

The symbol table header contains a pointer to the icode
segment, the total size of the symbol table segment, and
lengths of items in the symbol table. The symbol table area
contains a series of entries, one for each identifier in the
context. There are fields in the entry for the storage organi-
zation of the identifier (e.g., COMMON and ALLOCATED), the
identifier representation such as DOUBLE or REAL, the
number of dimensions (if an array), the type of identifier
(label, numeric variable, subprogram, etc.), the offset into
the value area of its definition, and the characters of the
identifier name. If this area has to grow because the user
enters new identifiers, it moves the prerun object code
down, extending the segment if necessary,

The prerun object code allocates space for the local vari-
ables of the context, and it also initializes any bounds that
these variables need. This object code does not correspond
to any program statement; it just sets up the variables that
the statement object code will use. In BASIC, variables do
not have to be declared explicitly; new variables can be
defined by keyboard operations or even by modifying an
executing program. This run-time implicit variable alloca-
tion can cause the prerun object code to grow so that the
new variables can be initialized at the next activation of
this context.

The double segment approach facilitates the manage-
ment of all the dynamic edges. All areas except for the two
headers must be able to grow. The icode area and the sym-
bol table area must grow at the same time during parsing.
The statement object code area and the prerun object code
area must grow simultaneously during program execution.
Compiled Code Contexts. The user can compile any context
currently in memory by using the COMPILE command and
store the object code in a PROG format file. Two benefits
accrue from the fact that compiled contexts contain no
intermediate code. They require less memory when loaded,
and it becomes possible to release programs without releas-

© Copr. 1949-1998 Hewlett-Packard Co.

object code)
Parameter List

Source Text of Original
Context Header

Compiled Statement
Object Code

Prerun Object Code

Free Space

Segment Transfer Table

Fig. 2. Machine data segment for compiled code context.

ing their source. Compiled and icode contexts can coexist
in the same program. In this case the icode subprograms
list normally, while the compiled ones list the source of
their original context header. These lines begin with
>>>>> to indicate that the subprogram code is compiled.

Since compiled contexts have fewer dynamic edges than

their intermediate code counterparts, they require only one
machine data segment (see Fig. 2).
Icode Format. Each context contains a block of inter-
mediate code that directly represents the source text of the
original subprogram. There is one line of icode for each
line in the source. A line of icode contains a header, fol-
lowed by a series of tokens that represent keywords,
operators, constants, and symbol table entries. These to-
kens are of varying length and are generally in the same
order as the elements they represent in the original source,
except for expressions, which are in reverse Polish notation
(RPN). The first byte of each icode token describes what
type of entry it is and how many bytes the entry takes.

The combination of RPN for expressions and source order
for everything else in the intermediate code may seem
strange. Since the Model 520's CPU uses a stack architec-
ture, RPN makes it easy for the compiler to generate optimal
code for expressions. On the other hand, source order
simplifies listing and nonexpression code generation, be-
cause the compiler can know what kind of statement it is
dealing with at the beginning of the icode line.

A line of icode is simply a series of bytes from 11 to 255
bytes long. There are length fields in each line to allow the
system to traverse the lines of icode either forwards or
backwards. This last capability is useful when scrolling
backwards in the editor. The system generally refers to a
line of icode by specifying its offset in the icode area.

The objective in the design of the intermediate code was
to minimize the memory space it requires. Most program
elements need just a single-byte entry to represent them.
For numeric constants, studies have shown that most con-
stants are small integers, Thus, for integer constants in the
range 0 to 9, single-byte icode entries are used. For the
somewhat larger constants (up to 255), two-byte entries are
used. Constants greater than 255 require five-byte entries.
Floating-point constants are represented as character
strings. Most real constants such as 5.3 only have a few

characters, so storing them as characters takes fewer bytes
of storage than if they were stored as an eight-byte real
value. Keywords are arranged so that the most common
ones have a single-byte icode representation. All other en-
tries take either two or three bytes.

Svmbol table entires have two passible forms. In BASIC
programs, commonly referenced identifiers tend to have
single-letter names such as I, J, and N, and represent
numeric variables. Ten special locations are reserved in
the symbol table for this type of identifier, and a special
single-byte icode entry exists to represent them. All other
identifiers need a two-byte icode entry. If there are more
than ten single-character numeric variables, the first ten
will use the single-byte representation, and the rest will
use the two-byte representation. All nonnumeric iden-
tifiers, such as strings, labels, functions, and subprograms
always use a two-byte icode representation.

Two examples of icode program lines for two typical
BASIC statements are shown in Fig. 3.

Fundamental Mechanisms

The run-time compiler is an incremental compiler. That
is, the program is compiled one piece at a time. In this case
the unit of compilation is a BASIC program line and each
line is compiled the first time it is executed. The simple
program listed in Fig. 4a illustrates the fundamental
mechanisms of the run-time compiler. As a programmer
enters a program, it is translated from the BASIC source
code to an intermediate code representation as discussed
earlier. When the programmer presses the RUN key to exe-
cute the program, the system detects that the first line of
the program is not yet compiled, so a bootstrap code se-
quence is emitted to invoke the compiler to compile the
first line (Fig. 4b) and control is passed to it. Line 10 is
then compiled and the compiler checks to see if the next
line, line 20, has been compiled yet. It has not, so a code
sequence to invoke the compiler for line 20 is appended
to the end of the code for line 10.

This new code overlays the initial bootstrap sequence,
which is no longer needed (Fig. 4c), and control is trans-
ferred to the code for line 10, which is executed and then

Original BASIC Line:
1000 PRINT REVS{AS&BS),A+PI

Icode:

03232 02217 10 000 232 0 25 0 28 160 246 16 170 140 180 151
1000 | Len | | AS BS & REVS) . A P
Stetus Cal PRINT
Pos
Prior Ocode
Len Offset
{uncompiled)

Original BASIC Line
1010 Finish: END | end
lcoda:

03 242 32 21 22 15 0 19 24 0 31 246 105 254 7 22 32 101 110 100

| Y 4 \ / / / |- commen! ——e|
1010 Len Col Finigh END [fe— toxt —]
Stalus Fos (iabai) | Len
(label Prior Ocode Col
hare) Len Offset Comment Pos

(complied) Header

Fig. 3. Two examples of icode representations of BASIC
program lines.

MARCH 1984 HEWLETT-PACKARD JOURNAL 17

© Copr. 1949-1998 Hewlett-Packard Co.

(a) Example BASIC program

10 PRINT "Table of Squares and Square Roots'
20 1=1

30 IF | - 100 THEN Done

40 PRINT 1142, SQR(I)

50 | = 1+1

60 GOTO 30

70 Done:END

(b) run command bootstraps to begin execution

call compiler(10)

(c) Line 10 compiled

code for line 10
call compiler(20)

(d) Line 10 executed and line 20 compiled

code for line 10
code for line 20

“call compiler(30)

(e) Line 20 executed and line 30 compiled

code for line 10
code for line 20
code for line 30

test for 1 > 100
true: call compiler(70)
false: call compiler(40)

(f) Line 30 executed (test was false) and line 40 compiled

code for line 10
code for line 20
code for line 30
test for | > 100
true: call compiler(70)
false: code for line 40
call compiler(50)

(g) Line 40 executed and line 50 compiled

code for line 10

code for line 20

code for line 30
test for | = 100

true: call compiler(70)
false: code for line 40
code for line 50
call compiler(60)

(h) Line 50 executed and line 60 compiled

code for line 10

code for line 20

code for line 30
test for | = 100

true: call compiler(70)
false: code for line 40
code for line 50
branch to code for line 30

(i) Line 30 executed (test was true) and line 70 compiled

code for line 10
code for line 20
code for line 30
test for | > 100
true: branch to code for line 70

faise: code for line 40
code for line 50
branch to code for line 30
code for line 70
end program

Fig.4. Example of run-time compiling. See text for explanation.

18 HEWLETT-PACKARD JOURNAL MARCH 1884

follows through to invoke the compiler for line 20. Simi-
larly, line 20 is compiled (Fig. 4d) and executed and the
compiler is called to compile line 30. After line 30 is exe-
cuted, there are two different lines that may be executed
next, depending on the results of the IF test. Therefore, the
compiler emits code to invoke itself for both lines 40 and
70, and the IF test will branch to one piece of code or the
other (Fig. 4e). Because the initial value of | is 1, the test
is false the first time line 30 is executed, so the compiler
is called to compile line 40. Lines 40 and 50 are compiled
and executed (Figs. 4f and 4g) and the compiler is then
invoked to compile line 60.

Line 60 is an unconditional transfer of control to line
30, which the compiler realizes is already compiled. There-
fore, a branch instruction to the code for line 30 is all that
is emitted for line 60 (Fig. 4h). The main loop in the program
is now entirely compiled, so the next 99 times through the
loop execute only compiled code, allowing the perfor-
mance of the system to be essentially the same as the per-
formance of a traditional compiled system.

Once the value of | reaches 101, the test in line 30 is
true, causing the compiler to be invoked to compile line
70. In this case, the code for line 70 cannot directly overlay
the call to the compiler, because doing so would overlay
code for other program lines. Instead, the code of line 70
is appended to the end of the rest of the compiled code
and the call to the compiler for line 70 is replaced with a
branch instruction to the code for line 70 (Fig. 4i). The
program then terminates, but the compiled code is still
present. If the user chooses to rerun the program, the RUN
command now finds that the first line is already compiled
and transfers control directly to it so that the second execu-
tion of the program executes only compiled code,

Interactive Features

In traditional interpretive systems, special checks for
user interactions or tracing take place at the beginning of
each line. Checking one or more flags can be done with
just a few machine instructions, which require a very small
overhead compared to the overall execution of the interpre-
ter. In a compiled environment even a few instructions can
consume a large percentage of the total execution time of
the program. The solution developed in cooperation with
the CPU microcode team was the start-of-line-check in-
struction SOLC. This instruction is the first instruction of
every compiled BASIC line. It performs two important
tasks. One, it checks a word at the base of the stack for
zero versus nonzero. If one or more bits in the word have
been set, indicating that something special needs to occur,
a trap occurs and the system takes the appropriate action.
If the word is zero, execution proceeds to the next instruc-
tion. Second, the SOLC instruction writes its own address
at a fixed location in the stack so that the system can always
find out which line is being executed.

A traditional interactive feature on HP desktop comput-
ers has been the live keyboard. The user can evaluate ex-
pressions, examine and modify program variables, and exe-
cute BASIC statements from the keyboard while the pro-
gram is running. When a Model 520 user presses the EXE-
CUTE key after typing in a command, one of the bits in the
SOLC check word is set, causing a trap to occur at the next

© Copr. 1949-1998 Hewlett-Packard Co.

SOLC instruction. The system then parses, compiles, and
executes the interactive command before returning control
to the program line that was interrupted.

Another traditional HP interactive debugging feature is
the ability to trace program flow by enabling the TRACE
mode. This causes a message to be displayed on each nonse-
quential transfer of control, showing the source and desti-
nation line numbers. When a Model 520 programmer ena-
bles tracing, another bit in the SOLC check word is set
which causes a trap on every SOLC instruction. The system
can then determine whether or not the BASIC line cur-
rently being executed is immediately after the previously
executed line, and display an appropriate message if it
is not.

Another important debugging capability is the ability to
trace the assignments to program variables. When the pro-
grammer enables variable tracing, the system enters a mode
where a trap occurs on every store into a memory location.
The system can then determine if the location is the loca-
tion of a program variable, and if so, display a message
with the new value of the variable and the line number of
the line that changed the variable.

Although enabling either or both of the tracing modes
slows down program execution speed significantly, the
program usually executes faster than the programmer can
follow it unless the trace messages are slowed down with
the TRACE WAIT statement, which causes a delay after every
trace message is displayed.

The occurrence of an asynchronous ON condition also
causes a bit to be set in the SOLC check word. When the
next SOLC instruction executes, a trap occurs and the sys-
tem sets up a branch to the specified service routine if the
scope and priority conditions are satisfied. The system
transfers control to a piece of static object code at the begin-
ning of a context, which in turn branches to the service
routine if it is already compiled, or to a bootstrap sequence
to invoke the compiler if it is not yet compiled. CALL or
GOSUB branches invoked by the ON condition return to the
point of interruption as directed by the static object code
after handling the ON condition.

Program Modification and Continuation

While debugging a program, a programmer often wants
to be able to make a fix to the program and resume execution
without having to start the program over. The run-time
compiler allows the Model 520 Computer to support this
capability with a compiled system. As an example, suppose
the author of the program in Fig. 4a decided during the
execution of the program to calculate the squares and
square roots for all integers up to 1000 instead of 100 as
in the original program. Suppose that the program was at
line 40 when the programmer entered the editor and
changed line 30 (Fig. 5a). The compiled code for the pro-
gram is no longer valid, so it is thrown away. The system
remembers that the program is currently at line 40. When
the programmer continues the program, the system deter-
mines that line 40 is not compiled and sets up a bootstrap
sequence for line 40 similar to the way in which the pro-
gram first began execution with line 10 (Fig. 5b). Line 40
is recompiled and executed, followed by line 50 and so
forth (Figs. 5¢ to 5g). The compiled code is rebuilt a line

at a time, just as it was constructed the first time.

There are some restrictions on what lines can be changed
while a program is running. Lines that have only partially
been executed cannot be modified or deleted. For example,
a line that invokes a multiline function or a subprogram
cannot be changed, or the function or subprogram would
lose the place it should return to. The SUB statement that
defines an active subprogram cannot be modified or deleted
until that subprogram returns to its caller. A similar restric-
tion holds for variable allocation statements such as DIM
and COMMON statements in an active subprogram. These
lines that cannot be changed are called busy lines.

Even though a busy line cannot be changed, the compiled
code for it may still be invalidated by an allowed change
to the context containing the line. In the case of a line that
invoked a multiline function, it must be recompiled when
the function returns. It is clearly undesirable to have to
check on every return from a function or subprogram to
see if the return point is still compiled. Instead, when com-
piled code for a busy line is discarded, the return address
in the execution stack is patched to point at an entry point

(a) Example BASIC program

10 PRINT “Table of Squares and Square Roots"
201=1

30 IF 1 - 1000 THEN Done

40 PRINT 1,12,SQR(1)

50 1=1+1

60 GOTO 30

70 Done:END

(b) conTinue command bootstraps to resume execution

call compiler(40)
(c) Line 40 compiled

code for line 40
call compiler(50)

(d) Line 40 executed and line 50 recompiled
code for line 40
code for line 50
call compiler(60)

({e) Line 50 executed and line 60 recompiled

code for line 40
code for line 50

code for line(30)
(f) Line 30 recompiled

code for line 40
code for line 50
code for line 30
test for | > 1000
true: call compiler(70)
false: branch to code for line 40

(g) Line 30 executed (test was true) and line 70 compiled

code for line 40

code for line 50

code for line 30
test for | > 1000

true: branch to code for line 70
false: branch to code for line 40
code for line 70
end program

Fig. 5. Effect of interactive program modification on run-time
compilation process. See text for explanation.

MARCH 1984 HEWLETT-PACKARD JOURNAL 19

© Copr. 1949-1998 Hewlett-Packard Co.

Preserving Programming Investment

An important consideration throughout the design of BASIC
for the HP 9000 Model 520 Computer was upward compatibility
with BASIC for the HP 9845 and HP 9000 Series 200 Computers
Even though the Series 200 appeared more than a year before
the Model 520, the two BASIC language systems were designed
concurrently. A compatibility committee composed of members
from both design teams coordinated the two efforts. As a result,
Model 520 BASIC is a nearly pure superset of Series 200 BASIC.
Thus, almost any Series 200 program can run without modification
on the Model 520. The most significant change is usually for
device select codes. The relationship between HP 9845 and
Model 520 BASIC is more complex. Some features of the lan-
guage were redefined to improve the consistency of the language
and to pave the way for future development. The most significant
changes are in the /O and graphics sublanguages. Since not
all HP 9845 programs can run on a Model 520 Computer without
modification, a translator program was written to assist users in
porting valuable existing software to the Model 520.

Experience to date with transporting HP 9835 and HP 9845
programs to the Model 520 has been quite good. Many programs
execute successfully without modification, and most will execute
correctly after manual modification of a few syntactically invalid
lines. In spite of the success rate of porting programs without
the translator, use of the translator program is recommended as
insurance against some subtle semantic changes. There is a
small set of programs that do require great effort to port. These
programs contain a significant number of device-dependent por-
tions or portions written in assembly language. Included in the
device-dependent set are programs that depend heavily on di-
rectly addressing the CRT display and on certain uses of its
video enhancement options.

There are three basic difference categories that the translator
program handles. First is where the Model 520 supports identical
semantics, but by way of a different syntax. Second is where the
Model 520 supports the same syntax, but assigns different
sernantics to it. Third is neither of the above. Elements of this
last set range from a slight change in semantics, which may
affect program behavior only very infrequently, to features that
have no equivalent and require user understanding of the intent
of the program to make the changes. The translator recognizes
almost all of these, flags them, and gives suggestions on how
to translate manually.

The best example of first category is the modulo operator MOD,
which has been changed to MODULO in the Model 520. Some
others can result in a single line expanding to multiple lines (see
MAT INPUT exampie below), but the semantics are still preserved.

The most pervasive example of the second category is the
change from BCD to binary arithmetic. In this case the translator
issues diagnostics when it sees potential problems such as
noninteger numbers in FOR loop bounds and step sizes, or rela-
tional eguality tests where exact equality was possible with BCD
values, but will not be with binary values. A second example is
the change in precedence for some operators. For example, the
NOT operator has lower precedence on the Model 520 than on
the HP 9835 and HP 9845 Computers.

Translation Examples

In many cases, the changed precedence does not affect the
results of computations. For example, the expression —AxB
means (—A)=B on the HP 9835 and HP 9845, but it means —(AxB)
on the Model 520. Either interpretation of the expression pro-
duces the same answer (with the rare exception of an overflow
in an intermediate result), There are cases, though, where the

changed precedence does matter. The expression —3 MOD 2
yields a value of one on the HP 9835 and HP 9845 because it
is (—3) MOD 2. The expression —3 MODULO 2 yields a value of —1
on the Model 520, because it is interpreted — (3 MODULO 2). After
passing through the translator, the HP 8835 and HP 9845 expres-
sions appear as (—-A)x B and (—-3) MODULO 2. The —A is paren-
thesized unnecessarily, because of simplifying assumptions in
the expression parser. These simplifying assumptions are con-
servative—they may cause unnecessary parenthesization, but
will not omit any necessary parentheses.

When the translator encounters the statement

20 FOR 1=1TO 2 STEP 1

it gives the warning

FOR loop with non-integer bounds or step size may behave differently due
to binary arithmetic.

Most of the items handled by the translator could be done
manually, though at the cost of considerable tedium. For exam-
ple, inputting an array can be done on the HP 9845 by the
statement

100 MAT INPUT A
The identical operation on a the Model 520 is accomplished by
100 INPUT A(+)

The HP 9845 also allows the redimensioning of an array by an
INPUT statement, but the Model 520 does not. The statement

100 MAT INPUT A(3,5)
translates to

100 REDIM A(3,5)
101 INPUT Af*)

Finally, consider an extreme case where the HP 9845 statement
100 IF X=3 THEN MAT INPUT A{—-N DIV M,—N MOD M)
is converted automatically by the translator to

100 IF X=3 THEN

101 REDIM A({—N) DIV M,(=N) MODULO M)
102 INPUT A(x)

103 END IF

If adding new lines creates duplicate line numbers in the pro-
gram source, the translator issues a diagnostic, and correction
of the problem will require user intervention after getting the
translated source. No attempt is made to renumber existing
source lines, since that would also require finding and changing
any programming references to the affected line numbers.

One of the most complicated translation examples can be
found in the CAT statement. The HP 9845 statement

100 CAT TO A$(+),Skip,N;"selector:msus”,1
translates to
100 CAT “:msus” TO AS{=); SELECT “selector”,SKIP Skip, COUNT N,NOHEADER

Note that every parameter after AS(+) in the original statement is
optional. Furthermore, with the exception of the final portion (,1),
each parameter is independent of all the others, and in the string
selector:msus, either the selector or the :msus portion could appear
without the other. In all cases the associated parameter in the
translation is left out or included as necessary. The final 1 is
what causes the NOHEADER portion to appear in the translation.
if this portion is ,0, the NOHEADER portion does not appear. If the

20 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

final portion is a variable, a diagnostic is given to the user to
chieck the statement for possible manual changes.

Implementation

The transiator implementation draws much from conventional
compiler technology. It is driven by a recursive descent parser,
which in turn relies on a scanner to build language tokens Dy
reading the input statement one character at a time. At first
glance, it appears that the translator would require complete
knowledge of the HP 9835 and HP 9845 BASIC language gram-
mar. Arithmetic expressions can occur in all sorts of strange
places in BASIC statements, and every one of them must be
inspected for possible changes

The most significant simplifying assumption is that each input
program is a syntactically valid HP 9845 program as SAVEd by
the HP 9845's interpreter. Thus, many statements may be trans-
lated with no knowledge of their grammar. Each BASIC statement
is treated as a sequence of expressions (usually delimited by a
blank or a comma) which can generally be inspected and trans-
lated independently. This means that isolated keywords are pro-
cessed as an expression by themselves. Complex expressions
may cause recursive calls on the expression evaluator to evaluate
subexpressions such as parenthesized expressions, function or
procedure parameters, etc.

Of course, things are not quite that simple everywhere. Some
statements must be understood in greater detail. They are han-
dled in typical (nontable-driven) recursive descent fashion. When
a keyword or expression type is detected at any level thal requires
more detailed analysis, a handling procedure is called, which

may itself invoke the expression evaluator to handle the subex-
pressions. To support this detection and subseguent handling,
the expression evaluator always retumns the type of the expression
it found and its stariing and ending character positions in the
source statement. This information must be kept until the state-
ment is completely processed, since some statements require
the rearrangement of many of their expressions. Which translated
expression goes where depends on the type and/or existence
of certain other expressions in the original statement. This kind
of support is required for statements such as the CAT example
earlier.

In all cases the translator tries to get by with the least under-
standing necessary to translate a given statement. Any primary
keyword that reguires no special handling is processed at the
outermost level by calling the expression evaluator successively
until the end of the statement is reached

The translator itself is written in Model 520 BASIC. It contains
about 4500 statements, and was designed, coded, and tested
by one person in ten weeks. There were two key factors in this
short development period. First, all required translator actions
were well defined in advance. That is, the problem to be solved
was clearly stated. Second, the Model 520 provided an excellent
interactive development/debugging environment.

Acknowledgment

The help of Teresa Wall, a student summer employee, was
invaluable in collecting and organizing the differences from HP
9845 BASIC.

-Gerrie L. Shults

in the static object code for the context that will set up the
compiler to recompile the busy line and resume execution
at the appropriate place in it.

Summary

Maodel 520 BASIC has the interactive friendliness of pre-
vious interpretive systems with the execution performance
of a compiler. All of the interactive features of BASIC in
HP's earlier desktop systems are supported.

The extra overhead introduced by run-time compiling
accounts for less than 5% of the execution time of most
programs and it is less than 1% for many of them. The
compiling that takes place at run time is very fast since
syntax is checked as lines are entered and the intermediate
code produced is optimized for compiling.

For large programs, the intermediate code and object
code are each about the same size as the source. (This does
not include run-time support routines which are consid-
ered part of the system.) Because of the ability to throw
away code when no more memory is available, a program
can run (slowly) in just slightly more memory than is re-
quired for the intermediate code and variables. Further-
more, the system provides the ability to produce and exe-
cute compiled code without any associated intermediate
code by using the COMPILE command.

Acknowledgments

We would like to thank other team members for their
contributions to this project, which indeed was a team
effort, with major contributions coming from each team
member. Tom Lane contributed ideas and expertise in vir-
tually all areas. He was personally responsible for most of

the human interface design and for the internal process
model. He also made major contributions to the definition
and implementation of the systems programming language
used to implement the system. David Wight was responsi-
ble for the early development of the intermediate code
format, and later for design and implementation of the very
complex executive process. Karl Freund was responsible
for high-level mass storage support. He made major con-
tributions to the design and implementation of program
and data I/0 to mass storage, and to the support of multiple
disc formats within the single mass storage system. Gerrie
Shults was responsible for alternate language support and
for the MAT operations, as well as for the HP 9845 to Model
520 BASIC translator. Special thanks to the microcoders,
especially Jim Fiasconaro and Bill Kwinn, who made
changes and additions to the CPU instruction set to support
this compiler better. Special thanks also to those who de-
veloped tools to support the development of this project.
Without these tools, successful development would have
been nearly impossible. The toolsmiths were Jeff Eastman,
Husni AlSayed, Mike Connor, Mike McCarthy, Alan Sil-
verstein, Dennis Georg, and Dan Osecky.

References

1. K.P. Burkhart, et al, ““An 18-MHz, 32-Bit VLSI Microprocessor,”
Hewlett-Packard Journal, Vol. 34, no. 8, August 1983.

2. P.J. Brown, "Throw-away Compiling,” Seftware Practice and
Experience, Vol. 6, no. 6, 1976, pp. 423-434.

3.]. Hammond, “BASIC—An Evaluation of Processing Methods
and a Study of Some Programs,”’ Software Practice and Experience,
Vol, 7, no. 6, 1977, pp. 697-712,

MARCH 1984 HEWLETT-PACKARD JOURNAL 21

© Copr. 1949-1998 Hewlett-Packard Co.

A Local Area Network
Series 500 Computers

for the HP 9000

by John J. Balza, H. Michael Wenzel, and James L. Willits

EWLETT-PACKARD's Manufacturer's Productivity
H Network (MPN) divides the computing applications
for a typical manufacturing company into four areas:

accounting, manufacturing, factory control, and computer-
aided design. Data is collected and stored in each area and
access is provided to users via combinations of computing
and networking. Data access by users in the same area is
required frequently and to other areas more intermittently.

In the computer-aided design area, scientific and en-
gineering workstations are connected into clusters for re-
source and information sharing. LAN 9000 provides the
capability to cluster HP 9000 Series 500 Computers on a
local area network. In the future, additional HP-UX* work-
stations such as the HP 9000 Series 200 Computers will
also be connected to this local area network.

Communication between the four MPN areas occurs over
a backbone network. The backbone may consist of various
forms of communication technology such as a local area
network, packet switching, and private branch exchange.
LAN 9000 can also serve as a backbone network connecting
HP computers from the other three MPN areas.

Definition of LAN 9000

LAN 9000 is a product composed of both hardware and
software. Its structure follows the ISO (International Stan-
dards Organization) OSI (open system interconnect) model,’
which divides network functionality into seven layers (see
Fig. 1). In the LAN 9000 implementation, the physical and
link layers are accomplished in hardware, and the remain-
ing upper layers are implemented in HP 9000 software.
The physical layer provides access to the physical com-
munications media. The link layer defines the frame format

*HP-UX is HP's implementation of the UNIX™ operating system

osl
Levels

6-7 Interprocess.
(Presentation [0 10 R LR T
and
Application)

v

4-5
(Transport)

1-2
{Link and
Physical)

22 HEWLETT-PACKARD JOURNAL MARCH 1984

and the protocol for error detection. The internet layer
provides the protocol for connecting multiple networks,
multiplexing, and data segmentation and reassembly. The
transport layer provides end-to-end reliability, multiplex-
ing and flow control. The session layer provides a common
interface to the transport for the applications. The presen-
tation and application layers provide data translation and
the actual network services visible to the user.

Hardware. The LAN 9000 hardware implements the phys-
ical and link layers for the Ethernet local area network
specification.*® The hardware consists of an HP-IB (IEEE
488) interface card connected to an Ethernet interface unit,
which in turn is connected by twisted-pair branch cable
to the transceiver that taps the 50-ohm Ethernet coax cable
(see Fig. 2). Ethernet is a bus configuration where conten-
tion between multiple stations is resolved by a technique
called carrier-sense multiple-access and collision detect
(CSMA/CD). The transceiver provides the driver electronics
for the cable, and the Ethernet interface unit provides ad-
dress recognition, arbitration, and error detection. The
Ethernet specification supports 10M-bit/s performance for
up to 100 nodes on a 500-meter segment of Ethernet coax,
Each branch cable can be up to 50 meters long.

Software. The LAN 9000 software consists of the upper
layers of protocol and a supporting network architecture
(see Fig. 1), which will be discussed later. The transport
and internet levels were originally defined by the U.S. Defense
Advanced Research Projects Administration [DARPA)*?
and are currently used in a large functional network called
ARPANET.* The transport layer is called the transmission
control protocol (TCP) and the internet layer is called the
internet protocol (IP). The applications consist primarily
of three functions: the ability to access remote files, the

“The LAN 8000 implementation is a subsel of the DARPA protocols and has not been
tested for use on ARPANET

Host
Operating
System

Fig. 1. LAN 9000 software struc-
ture and its relationship to the In-
ternational Standards Organiza-
tion open system interconnect
(0SI) model for computer network
functions.

© Copr. 1949-1998 Hewlett-Packard Co.

ability to achieve high-speed transfer of files, and a lower-
level tool that enables users to initiate and communicate
with remote processes programmatically.

Accessing remote data is accomplished both by remote
file access (RFA) and network file transfer (NFT). RFA is
advantageous when accessing individual remote records
and when using existing programs that access files. The
method of access for RFA is a simple extension of the file
path name with a remote specifier. For example, the differ-
ence in HP-UX commands between editing a local file and
a remote file on node george is:

Local: vi textfile
Remote: vi /net/'georgetextiile

NFT is advantageous when the high-speed movement of
a file from one system to another is desired. After transfer,
the new file can be accessed for processing. NFT achieves
about four times the throughput of RFA by using large
blocks and a pipelined transfer technique. The topology
for NFT is the three-node model, where the initiator, pro-
ducer, and consumer can all be on different nodes. NFT is
accomplished with the dscopy command, which includes
the source and destination file path names as parameters.
File security is invoked for both RFA and NFT by the system
containing the file. Security is applied to remote access
consistent with the mechanisms used for local access.

Interprocess communication (IPC) and remote process
management (RPM) are lower-level tools that enable a user
to write custom distributed applications. They consist of
a number of procedures that can be called from the user
program. RPM gives the program the ability to create and
execute another program on a remote system and to termi-
nate it. IPC consists of procedures to establish a communi-
cation path, read and write data, and terminate the path.
The communication path is called a virtual circuit and
enables full-duplex communication between both process-
es. The rendezvous between the two processes is achieved
through a name assignment by one process, a name lookup
by the other process, and then a handshake to establish
the virtual circuit. The IPC functionality was modeled after
the IPC specified in the 4.2BSD version of UNIX™ de-
veloped by the University of California at Berkeley (UCB).

Design of LAN 9000

Early in the project we knew that there would be several
major problems to be solved. It was our intention to select
an architecture so that as our networking needs changed,
the architecture would still support them. Several key prob-
lems were recognized. First, we knew that we would be

UNIX is a U.S. trademark of Bell Laboratories.

Twisted-Pair
Cable

.i';:.<—
—| 15t0 50 m l-—

Ethernet

Unit

[il
HP 9000
Series 500 Computer

Host Operating System

Host System Interface*
Execution Environment* 1

‘ Pt i czah v o A
| ' ;[; Network Protocol Code* '
| |
*Network Code
Fig. 3. Layered isolation of portable network code.

dealing with several operating systems as well as several
processor families. At the time we were considering at least
two different operating systems and processors, one of
which was the NMOS-III VLSI 32-bit system used in the
HP 9000 Series 500 Computers. We wanted to build soft-
ware that could be used in any multitasking operating sys-
tem with any processor family.

Second, we knew from experience that many protocols
would need to be implemented within this architecture.
While there are some industry standard protocols today,
work in this area is just beginning. To meet HP customer
needs in the future, we would have to support a variety
of protocols at each of the seven levels of the OSI maodel.
Even if we only implemented industry or international
standards, there would still be a multitude of protocols,
because many different physical configurations could be
used to construct a network. While our initial product was
only for local area networks, eventually we would need
remote connections and connections over public data
networks.

Third, the system had to be robust and integrated. There
were several computer scientists working on the original
product and over time many more would contribute to the
networking functionality. We needed to define an environ-
ment where these designers could work independently and
still have the result appear to be one integrated product
that would be free of errors.

Because of these challenges, our first task was to define
what we eventually called our data communications im-
plementation architecture. This architecture is a com-
prehensive specification of module interfaces. As shown
in Fig. 3, these modules are successively layered in their
isolation from the host operating system. For efficiency
and portability, the network protocol modules assume a
very high-level execution environment that is tuned for
networking code. Similarly, the execution environment

(continued on page 25)

Ethernet
Cable
Maximum
Length: 500 m
Maximum
Nodes: 100

Fig. 2. The hardware design of
the LAN 9000 product implements
the Ethernet local area network
specification as shown.

MARCH 1984 HEWLETT-PACKARD JOURNAL 23

© Copr. 1949-1998 Hewlett-Packard Co.

Data Communications for a 32-Bit Computer Workstation

by Vincent C. Jones

The HP 9000 Series 500 Computers place heavy dernands on
data communications. Aside from the local networking capability
provided by LAN 9000, there are numerous other needs, because
the real world does not consist exclusively of HP computers
running HP networking software. The range of these needs is
even wider than normal, because of the pivotal nature of the
Series 500 itself. It needs not only the communications capability
of a single-user workstation, but also those of a powerful multiuser
machine

Single-user workstations, even those as powerful as the desk-
top version of the Series 500, the Model 520, do not function in
isolation. Effective problem solving often requires synergy be-
tween mainframe resources and the individual workstations. This
requires easy communication between workstation and main-
frame, particularly interactive terminal-oriented access and reli-
able file transfer. A typical application might require the Model
520 to offload some computation-intensive tasks from a main-
frame, allowing the mainframe to provide better response to a
larger number of users.

In multiuser mode, the emphasis tends to be more along the
line of resource sharing among the different users. The communi-
cation link with other mainframes is a resource to be shared the
same as a line printer or data base. The interactive linkup from
the user's terminal to multiple mainframes is not as impartant a
need as the ability to get required data to the user's local main-
frame for processing, to communicate with users on other main-
frames, or to move programs and data to larger, more specialized
mainframes for processing.

A second dimension to the matrix of data communications
needs is the network environment in which the mainframes oper-
ate. SNA (systems network architecture) and bisync are common
with IBM host computers while DecNet™ and UNIX™ predomi-
nate on host computers made by Digital Equipment Corporation
(DEC). HP's DSN services are similarly tuned to take advantage
of the strengths of HP computers, while Burroughs, Univac, and
Just about every other computer vendor offer their own networking
solutions. Unfortunately, they are all incompatible, making it
necessary to implement a number of solutions while remaining
hopelessly incomplete. However, IBM is such a dominant force
in the mainframe market that virtually all vendors offer connection
to IBM using emulation techniques. Indeed, IBM 2780/3780 RJE
(remote job entry) has become so prevalent among minicomputer
vendors thatitis considered a de facto communications standard
for reliable file transfer even in non-1IBM environments. Similarly,
almost everyone allows effective on-line access from "dumb”
asynchronous ASCII terminals.

This lets us define a minimal set of communications abilities
to allow efficient use of the Series 500 in most computing environ-
ments. Returning to the fundamental needs of users, we need
interactive mainframe access and reliable file transfer. An asyn-
chronous ASCII terminal emulation with programmable data rate,
character size, parity, stop bits, end-of-line, start-of-line, prompt,
and other parameters can be configured to access virtually any
computer that can connect to ASCIl terminals. By making the
emulator user-modifiable (by providing source code or other
technigues), access can be gained to any host that supports
asynchronous terminals. Adding the capability to divert host
transmission to a file and use file input in place of keystrokes

UNIX is a US. trademark of Bell Laboratories
DecNet is a U S trademark of Digital Equipment Corporation

provides a simple, low-cost file transfer capability. Where higher
data integrity is required, IBM 2780 RJE provides a synchronous,
error-controlled linking.

This leaves only interactive IBM access to provide, more com-
monly known as 3270 capability. Asynchronous terminal emula-
tion can be used with black boxes known as protocol converters,
but typically these are useful only under limited conditions. Most
important, they are not a one-for-one replacement for an IBM
3270 display station, which requires users to memorize multi-
stroke key sequences to access the myriad key functions avail-
able on actual 3270 systems. However, where limited or occa-
sional access is required, especially if the user is also no longer
using "the real thing," they can function guite well.

Unfortunately, IBM 3270 does not specify a unique access
means. Instead, it is an entire family of products including cluster
controllers, display stations, printers and integrated controller/
display stations. For example, to meet varied customer needs
and keep up with technology advances, there are over twenty
different models of 3274 controllers (some are obsolete). There
are more than ten different models of 3278 and 3279 display
stations, any of which can be used with current 3274 controllers.
Despite the plethora of options, however, there are really only
two approaches to 3270 emulation. The first (and until late 1982,
the only approach) is to emulate the entire cluster controller and
attached display stations using bisync or ENA protocols to con-
nect to the mainframe via a 370x front end. Commonly called
3274 emulation, this approach is particularly attractive for mul-
tiuser situations, where up to 32 users can simultaneously access
the mainframe through the emulator while requiring only a single
link from the local computer to the |IBM mainirame.

The second approach, pioneered on the IBM Personal Com-
puter by Technical Analysis Corporation (now Digital Communi-
cations Associates, Inc.), is to emulate only the display station,
leaving the existing IBM cluster controller in place and hooking
into the coax protocol used between controller and display sta-
tions. Commonly called 3278 emulation, this approach is most
attractive when replacing individual display stations with com-
puter workstations. Either approach, however, can typically be
used in the majority of applications, albeit not always optimally.
This means that the critical interconnection needs of most work-
station users can be met with just three networking products:
flexible asynchronous terminal emulation, simple |1BM 2780/3780
remote job entry emulation, and some form of IBM 3270 capability.

In addition to these minimal requirements, other communica-
tion needs are common enough to demand specific resolution,
particularly for efficient integration into HP, DEC, and UNIX envi-
ronments as well as |[BM.

Implementations

There are probably as many ways o develop the required
capabilities as there are opinions in what makes up an adequate
set of capabilities. We had choices ranging from "offer what's
already available off the shelf" to "design, develop and build
from scratch.” As will be seen, we tried to select whatever would
provide a quality product in the shortest time—typically taking
an existing product and modifying it as required.

The first communications products developed for the Series
500 were two general-purpose asynchronous terminal emulators
with file transfer capabilities—one for BASIC and one for HP-UX.
Crucial to both was providing enough flexibility to communicate

24 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

with virtually any computer that uses ASCII characters on an
asynchronous line. This means not only supporting standard op-
tions like line rates from 50 to 19,200 bits per second, 7-bit or
B-bit characters, and various parities, but also allowing options
like defining what characters to use for new line and XON/XOFF
host prompis before transmitting the next line, and line-oriented
modes complete with start-of-line and eng-of-line sequences.
Also required was the ability to function with existing protocol
converters for IBM 3270 and RJE

The BASIC asynchronous terminal emulator 1s based on the
HP 8845 Computer's high-speed terminal emulator, maintaining
the same human interface so that users moving up from the HP
9845 would not have to leam a new emulator. The HP-UX asyn-
chronous terminal emulator (aterm) is just the opposite, a new
design from the bottom up. At the moment, the implementation
is only part of the total design. Several critical features allowing
modular extensions and user customization cannot be im-
plemented until enhancements to HP-UX that will permit one
process to reliably react to two concurrent asynchronous inputs
are in place.

Once we were confident our minimal needs were covered, we
could start looking at how to provide more specific connections.
Primary criteria were timeliness of the implementation and utility
to the user. This led to three main communications thrusts: HP
connection via Ethernet, IBM connection via RJE, and UNIX con-
nection via cu (call UNIX) and uucp (UNIX-ta-UNIX copy).

As mentioned earlier, IBM communications consist of two major
capabiliies: 3270 interactive access and remote job entry. While
efforts are underway to provide built-in 3270 capability, our initial
effort went into file transfer via RJE. At the beginning of the
project, we had to select from a number of potential options. For
example, did we want to do just 2780/3780 RJE or did we want
to take advantage of the multiuser capabilities of the HP 9000
Series 500 Computers and provide multileaving RJE (MRJE)? Bell
Laboratories' System Il UNIX, which we were building on, had
an MRJE capability (the send cormmand). However, that capability
was built using a virtual protocol machine running on the DEC
KMC-11 communications card. In addition, the System || pack-
age was based on the assumption that the only use for RJE
would be to submit job streams to IBM and Univac hosts, an
unacceptable restriction in view of our desire to use RJE also to
exchange files with minicomputers.

Our solution was to try to take the best of both approaches;
keeping the convenient job submittal facility of the System |lI
MRJE user interface (the send commmand), but pulting it atop a
2780/3780 RJE program (r2780) which could also be used di-
rectly by the user if only file transfer were required. Also required
were two utility programs: a trace filter to convert card trace data
from the compressed binary form generated on-line to a readable
listing, and a print output filter to expand IBM carriage controls
to HP-UX compatible sequences. The HP-UX standard definition
for send is link-independent so that although the current Series
500 implementation is 2780/3780-link-based, future enharice-
ments such as MRJE or SNA links to IBM could be added without
affecting the user interface.

Third on our list of required connections, after HP and IBM, is

DEC. Interactive access is fairly easy on multiuser systems—the
aterm asychronous terminal emulator can be made totally trans-
parent, allowing the user to take advantage of the ANS| compati-
bility mode offered on several HP terminals. The Model 520 work-
station user is restricted, however, to “dumb terminal” only. While
we consider the restriction undesirable, we do not envision many
users interested in dedicating & 32-bit worksiation {o terminal
emulation for data entry and editing. Similarly, it would be nice
to hook into DecNet for file access and dalta transfer, but again
priorities have prevented immediate satisfaction. For now, RJE
suffices for reliable file transfer, even though it requires a second
terminal connection to the DEC machine to control that end of
the connection

Last on our list of required connections is UNIX. Since HP-UX
is based on UNIX, we felt it vital that we fit into the UNIX data
communications environment. To simplify retaining compatibility
with evolving releases from both Bell Laboratories and the Univer-
sity of California at Berkeley, we attempted to take the standard
System Ill UNIX-to-UNIX utilities and change them as little as
possible. We started out with cu, wucp, and wux (UNIX-to-UNIX
execute). Although our goal was to leave them intact, we dis-
covered significant design changes were required. Most critical,
other than fixing numerous bugs, was removing restrictions
based on the Bell assumption that all users would have source
code to modify. Because HP-UX does notinclude an AT&T source
license, features reqguiring modification of the source code are
not acceptabie unless that source code can be provided to the
user by HP (i.e., was designed and written by HP, not Bell Labs).
Since all these utilities are based on asynchronous dial-up links,
smart modems are normally used. Unfortunately, each modem
manufacturer seems to use a different protocol to tell its modem
how to dial a specific phone number, Our solution was to move
dialing out of the main program and put it into a separate program
module, which is called from the main program and written by
the user (no source license required). Sample programs showing
how to dial Ven Tel and Racal Vadic modems are supplied.
Similarly, in uux the list of programs that can be run from a remote
machine was moved from a data array inside the program to an
external file. Visible changes from the System Ill version were
minimized. By retaining the original functionality and interface,
standard UNIX utilities that use uuep still work as expected, includ-
ing remote mall and the notes network.

Acknowledgments

Larry Bruns developed the BASIC asynchronous terminal
emulator, Chris Fugitt wrote the HP-UX asynchronous terminal
emulator, and Don Rosenbaum modified the UNIX communica-
tion utilities, including moving modem dialing out of the main
program into a separate module.

Continuing our close working relationship with the /O card
developers at HP's division in Roseville, California, Rick Dow
developed the r2780 program at Fort Collins, Colorado, while
Brian Krelle did the I/O card firmware at Roseville. Along with
them, Larry Bruns did the trace and print formatting filters, and
then brought up the System |ll send command.

modules build on other environment modules and rely on
the services of the host system interface, which provides a
machine-independent operating system interface. The host
system interface code consists of small and partially port-
able modules that perform whatever actions are necessary
to adapt the host machine’s operating system for network
use. For the Series 500 operating system, called SUN (see

articles on pages 28, 34, and 38), many of the host system
interface functions are null, that is, straight passthroughs
to system intrinsics. Ultimately, the host system interface
modules could grow to constitute a small operating system
in themselves when less functionality is provided by the
host machine. Notice that only these modules call the host
operating system directly and, therefore, they contain the

MARCH 1984 HEWLETT-PACKARD JOURNAL 25

© Copr. 1949-1998 Hewlett-Packard Co.

Higher-Layer (Using) Protocols

— Endpoints (One per

S T N data path)

s saary s B

1= P | | Functional Port
Rt e | (One per addressable
| function)

Execution
Environment

Lower-Layer (Serving) Protocols

Fig. 4. Interfaces to the protocol building block.

only nonportable network code.

Together, the execution environment and host system
interface modules provide multitasking with process syn-
chronization, memory management and accounting, inter-
task message and queue management, nodal management
(which controls and coordinates all the other modules in
the network subsystem), utilities for manipulating the
shared-memory protocol interface data structures, and a
library of miscellaneous utilities (like hashing routines*)
which are of general use for protocol modules.

Fig. 4 shows the logical organization of a protocol build-
ing block. This block encapsulates the code for a given
protocol. The main function of the network implementa-
tion architecture is to define the interfaces between a pro-
tocol building block and the blocks above it (which use its
services), the blocks below it (on which it depends), and
the execution environment. The upper and lower interfaces
are represented by shared-memory data structures. The ac-
tions that take place at each interface are represented by
specific message types.

The lawer interface for a protocol building block consists
of one or more functional ports—usually one. A functional
port can be visualized as a terminal strip of female electrical
sockets. (The related OSI concept is called a service access
point.)

The upper interface to the protocol building block con-
sists of an endpoint for each of the protocol's instances of
communication with a remote machine. An endpoint can
be visualized as a male plug that attaches to a specific
functional port of a higher (the using) protocol. (The OSI
endpoint term refers to the following concept: Each pro-
tocol building block regards an endpoint just below it a
the end of a data path “wire" that will carry its data tc
peer protocol module in a specific remote machine.)

The protocol building blocks are ““plugged” together by
nodal management for each instance of communication
with a remote machine as shown in Fig. 5. This chain of
protocol building blocks is referred to as a data path and
is represented as a linked list of endpoint data structures,
Data paths can join or branch to represent multiplexing or
alternate routing. Fig. 5 shows the data path that supports
an instance of network file transfer (NFT). All data and
control information related to moving a file between the
local and remote machines is carried by internal messages
flowing along this data path.

Note that in the current version of LAN 9000 there are

*Routines used to organize tables for rapid searching or look-up

26 HEWLETT-PACKARD JOURNAL MARCH 1984

several alternative building blocks at the services level. In
the future, there will also be alternative modules at all the
other levels as well. The protocol building block structure
will allow nodal management to plug together any combi-
nation of alternative modules that is appropriate for reach-
ing a particular remote machine. For example, the endpoint
underneath the internet protocol could just as easily belong
to the X.25 protocol* block, which would then be served
by an endpoint belonging to the LAPB (link access protocol,
balanced mode) /O card. Also, the NFT protocol could be
supported by an entirely different set of transport protocols.
We have already used the nodal management capability to
replace protocol building blocks by arranging data paths
through alternative modules. During development, we used
alternate data paths to inject special test modules at various
points above or below the code being developed.

The architecture described above solved three primary
problems. It isolated us from the operating system and
processor set by providing a series of common function
calls which we could create in any operating system. It
defined a series of interfaces between protocel modules so
that we could mix and match many protocols. These inter-
faces were based on proposals in the ANSIand ISO commit-
tees. Finally, these interfaces allowed various protocol de-
signers to design with some degree of independence and
still be sure that the system would be an integrated package.

We were concerned at first that creating all these module
interfaces would cause performance problems, but that was
a price we were willing to pay for the flexibility the ar-
chitecture would give us. In the end, we were pleasantly
surprised to find that with just a minimum of tuning, our
performance was as good as or better than many other
similar systems on the market. The code modularity and
the architecture increased the productivity of our design
group with no loss of performance.

Quality Assurance

It has long been a policy at our facility that the engineer
who designed and implemented a module is responsible
for the quality of that module. Following this policy, the
designers wrote the test plans for their individual modules.
This included both black-box and white-box testing. Here,
black-box testing is based on the user manual or external
specification of the module. White-box testing is based on
knowing how the module was designed and stressing it at
its weak points. Designers were responsible for doing their
own white-box testing, and many also did their own black-
box testing. The exception was when the module was de-
signed to be used by HP customers directly. At this point,
an independent tester was assigned to do the black-box
testing to give us an independent opinion on the usefulness
of the module.

The test plans formed the basis for determining when
we were finished testing. They were also used for schedul-
ing this phase of the project. One of the best indicators of
when the quality of the product is high enough to ship to
customers has been “Did we complete the test plan?” This
is one reason the test plan is reviewed by the quality assur-
ance department to ensure that it is rigorous and complete.

*The CCITT standard interface protecol for packet switching networks. This standard con-
sists of three protocol layers that conform to the lower three levels of the 0S| model

© Copr. 1949-1998 Hewlett-Packard Co.

The other major indicator of quality is a measure of the
mean time to failure. This time is the machine time spent
stressing the code in new ways, plus a derated amount of
machine time spent running old test programs, divided by
the number of failures detected.

Since completing the test plan usually takes some time,
we used a completion estimate for scheduling this phase.
Each designer estimated the hours necessary to design each
of the tests in the test plan. We then calculated the amount
of time necessary to find and fix code and design errors
from our historical data. Finally, we allotted time for over-
head and unanticipated activities. After completing these
estimates for each designer, we estimated that the test phase
would take about 15 weeks. Since the test plan was actually
completed in 16 weeks, we felt our estimate was quite
good. But at this point we still had not met our goal for

mean time to failure.
In the course of doing testing, we came upon a new test

method that we called triggers. Triggers is a method of
triggering asynchronous events to occur at particular times.
For example, if a routine asks for blocks of memory three
times in its execution, we can trigger the system to reject
the memory request at any of those three times. The trigger
mechanism allowed us to test most of the paths in our
code. It was this trigger mechanism that kept our measured
failure rate so high in the beginning. Even though most of
the events detected by the triggers were very improbable
in real life, we continued to test for them until the triggers
could not produce any more errors. Then we felt that we
had a very solid system and we finally met our mean time

| 4

File Access File Transfer

ol sl

I |
L 6]

Internet Protocol

L[0]

NIU (LAN) Driver
IO Card and Box
' .
|| -
“{o]

to failure goal. This additional test time took another four
weeks, but we felt the added code quality was worth the
effort. Most of the problems we solved with this technique
would have been very difficult to find and correct once
the product was in a customer's hands.

Future Directions

The current version of LAN 9000 establishes the base to
grow into additional topologies. The evolution will be in
the directions of connectivity to more kinds of workstations
and systems, additional links and gateways, and inclusion
of more industry standard protocols. The architecture pro-
vides the flexibility to add protocols, and it facilitates the
porting of the network software to other systems.

References

1. Reference Model of Open Systems Interconnection, Interna-
tional Standards Organization, ISO/TC97/SC16, Drait Interna-
tional Standard ISO/DIS/7498, 1982,

2. The Ethernet: A Local Area Network, Data Link Layer and
Physical Layer Specifications, Version 1.0, Xerox Corporation,
Digital Equipment Corporation, and Intel Corporation, September
1980.

3. RM. Metcalf and D.R. Boggs, “Ethernet: Distributed Packet
Switching for Local Computer Networks,"" Communications of the
ACM, Val. 19, no. 7, July 1976, pp. 395-404.

4. Postel,]. (ed.), Transmission Control Protocol—DARPA Inter-
net Program Protocol Specification, RFC 793, USC/Information
Sciences Institute, September 1981.

5. Postel, . (ed.), Internel Protocol—DARPA Internet Program Pro-
tocol Specification, RFC 791, USC/Information Sciences Institute,
September 1981.

Fig. 5. Example of a network file
transfer data path formed by plug-
ging appropriate protocol building
blocks together.

MARCH 1984 HEWLETT-PACKARD JOURNAL 27

© Copr. 1949-1998 Hewlett-Packard Co.

A General-Purpose Operating System
Kernel for a 32-Bit Computer System

by Dennis D. Georg, Benjamin D. Osecky, and Stephan D. Scheid

Series 500 Computers efficiently supports the real-
time requirements of the extended BASIC language
environment as well as the multiuser requirements of
HP-UX. The kernel provides efficient support for multiple
processors, a process model that supports a large user pro-
cess virtual address space, a virtual memory system that
supports both paged and segmented virtual memory, mem-
ory and buffer management, and a device-independent file
system which has the capability of supporting multiple
directory formats. The main objective of this operating sys-
tem kernel, called SUN, is to provide a clean interface
between the underlying hardware and the application-level
systems such as BASIC or HP-UX.
The SUN operating system can be separated into two
sets of major components, as follows:

T HE OPERATING SYSTEM KERNEL for the HP 3000

Non-I/O 1’0
Process Manager Input/Output Switch
Memory Manager Device Driver Modules

Buffer Manager Input/Output Primitives
Message Manager

Timer Manager

Trap Manager

Dispatcher

Nonvolatile Memory Manager

System Startup Manager

The /O components of SUN are described on page 38.
The SUN operating system manages the allocation and

deallocation of hardware resources. Memory and proces-

sors are the primary system resources. Other resources in-

clude buffers, message queues, file directories, input/out-

put channels, processors, and timers. The management of

these resources supports:

® The establishment of contexts (sets of code and data
addresses) for the execution of sequences of instructions

® The allocation of the processor to the execution of spe-
cific sequences of instructions

® The dynamic allocation of resources required by the al-
gorithms being executed.

Hardware and Operating Environment

The Series 500 hardware provides a stack-oriented envi-
ronment for program execution.’ Segmentation and paging
are used to facilitate memory management. A simplified
diagram of the operating environment is shown in Fig. 1
on page 35.

There are two basic types of segments: code segments
and data segments. Code execution on a Series 500 CPU is
contained in one or more code segments and uses several

28 HEWLETT-PACKARD JOURNAL MARCH 1984

data segments. One data segment is used as an execution
stack segment and at least one other data segment is used
as a global data segment. Each CPU contains hardware
registers to define and bound the current code, stack, and
global data segments. Other segments, called external data
segments, can be accessed indirectly through pointers
stored in the stack and global data segments. External data
segments can be paged.

Information to manage the segments is kept in tables—
one system segment table and many user segment tables.
However, only one user segment table can be active on a
CPU at a given time. The system segment table and the
currently active user segment table define the address range
of the program running on a CPU at any time.

A device reference table contains an entry for each I/O
channel. This entry contains information to establish the
code segment and global data segment for the interrupt
service routine when the corresponding I/O device requests
service. Each CPU has an interrupt control stack which
serves as the execution stack for interrupt service routines
and for the system dispatcher.

The CPU hardware defines a task control block to de-
scribe the state of a task. This block contains a pointer to
the user segment table for the task and to the task’s stack
and global data segments. The CPU microcode uses four
words of memory for each CPU in the system. These CPU-
dedicated locations point to the current user segment table,
the currently executing task control block, and the interrupt
control stack for the CPU.

Contexts

For this discussion, a context is a set of related addresses
that define a scope of addressability, that is, limit the set
of code and/or data addresses that are accessible. The SUN
operating system supports program, process, and partition
contexts.
Program Context. The simplest context is a program, a set
of one or more procedures. Each procedure is a collection
of instructions, with a common entry name, which may or
may not be parameterized. Instructions that make up a
program are stored in code segments. A program may oc-
cupy one or more code segments or several programs may
reside in one code segment. The address range (context)
of a program is the set of code segments that it occupies.

During program execution, procedure parameters and
local variables and an execution stack are stored in a special
data segment called the stack segment. Program variables
that are not local to program procedures or parameters to
those procedures can be stored in either the global data
segment or in arbitrary additional data segments called
external data segments. External data segments are only

© Copr. 1949-1998 Hewlett-Packard Co.

allocated as a result of explicit requests and can be either
paged or unpaged.

The context of an executing program or process also in-
cludes the current values of the hardware registers, which
define the current state of the hardware and the relative
state of the process. The hardware state of a process can
be established using information from the process’ task
control block and stack segment.

While a program has a static context, a process is an
active element with a dynamic context. In SUN, a process
is defined to be a unique instance of a consecutively execut-
ing program, and more than one process can share a pro-
gram. The primary operational characteristic of a process
is that the progress of any process in the system, as it
executes its code body, is not guaranteed relative to the
progress of other processes in the system.

Process Context. The minimum context for a process con-
sists of the program context, stack and global data segments,
and the current hardware state. Each process has its own
stack segment. Process contexts can be expanded by the
addition of an arbitrary number of external data segments.
They also can be dynamically varied by allowing the
executing program to switch global data segments dynam-
ically, create and delete external data segments, or extend
or contract existing segments.

Partition Context. A partition is a set of processes that
share a common user segment table. This segment table
has entries for the code and data segments that are local
to the partition. Since the segment table entries contain
the base address locations of the allocated segments as well
as their current lengths, the segment table defines the seg-
ments the partition can address.

Other than the availability of memory and segment table
space, there is no limit to the number of processes that can
exist simultaneously in a partition. All processes within a
partition can share the same global data segment. This seg-
ment represents the primary mechanism for sharing data
among a set of processes within a partition.

User partition contexts are created as a result of calls to
the START_PARTITION procedure. The procedure parameters
specify the information required to construct a partition
context as well as the context of the inital process that is
to be created and executed within the created partition
context. The execution of START_PARTITION allocates the
initial physical memory for the partition, initializes the
segment table for the partition, allocates the global data
segment for the partition, and establishes the context for
the initial process in the created partition. The initial pro-
cess can request additional resources, or create additional
process contexts. Like any other process in the system, the
progress of the execution of the initial process in the created
partition depends on its priority relative to other processes
and the number of other processes in the system as a whole.

A partition is deleted when the last process in that par-
tition terminates. The resources that make up the partition
are then returned to the appropriate pools of available re-
sources.

System Partition Context. The system partition is a special
context defined by the system segment table. Segments
described by the system segment table are addressable at
all times. The union of the segments in the system segment

table and the current user segment table defines the context
of the machine at any time. The system segment table con-
tains the system global data segment and other segments
that can be shared by all processes in all partitions because
of their global addressability.

Every process context is allocated from within a partition
context. There are two classes of processes: user partition
processes and system processes. The main distinction be-
tween user and system processes is the addressability of
the stack for the process. The stack segments of system
processes are allocated from the system segment table and
are therefore always addressable. A system process can
establish addressability to any partition context by chang-
ing its current user segment table, which together with the
system segment table, defines the current address space.
User processes cannot address any segments described in
any user segment table other than their own.

Process contexts can be deleted explicitly or implicitly.
A call to the SUN procedure PTERMINATE causes explicit
termination of the current process. Implicit deletion occurs
when the program being executed completes execution and
exits its initial procedure. Regardless of whether the dele-
tion occurs explicitly or implicitly, the effect is the same.
The resources used to construct the process context are
returned to the system for reallocation.

Processes in the subsystems supported by SUN always
execute within the context of a partition. Process contexts
established in a partition context can be used to control
asynchronous events or devices, simplify the solution to
an otherwise more complex problem, provide execution
environments that have special characteristics such as
specialized trap handling procedures, or separate the
execution of subsystem-supplied code from that of code
developed by a user.

An example of a process set provided by a language
subsystem is the model developed by the BASIC language
subsystem for the HP 9000 Model 520 Computer, an inte-
grated desktop workstation. Each BASIC partition has ac-
cess to a system human interface process and separate run
and executive processes. The human interface process
manages access to devices such as the Model 520's
keyboard and CRT, which are controlled asynchronously
by the user interacting with the machine. The executive
process controls the state of the partition's run process, the
parsing of language and command statements, and the com-
munications with the human interface process. The run
process performs the run-time compilation and execution
of BASIC programs written by a user.

Resource Allocation and Addressability

In most cases, memory object resources are allocated
from the partition containing the process making the re-
quest. For example, a request for the allocation of a data
segment by a process within a user partition context results
in the allocation of the segment from that partition's seg-
ment table. However, processes executing within user con-
texts also have an ability to allocate/deallocate memory
object resources from the system context explicitly. Pro-
cesses executing within the context of one user partition
cannot directly allocate/deallocate resources within another
user partition context.

MARCH 1984 HEWLETT-PACKARD JOURNAL 29

© Copr. 1949-1998 Hewlett-Packard Co.

Parallel Development of Hardware and Software

One of the earliest goals of the Model 520 Computer (the
desktop version of the HP 8000 Series 500) project was to bring
the completed system to the marketplace as soon as possible
after completion of the hardware. The traditional project pattern
inwhich development of the software takes place after the com-
pletion of the hardware was therefore inappropriate.

To increase both the productivity of the software development
team and the resultant guality of the final system software, a
high-level language was designed fo be used for all systems
programming. This language, called MODCAL, is based on Pas-
cal, but includes enhancements to allow separate compilation
and to provide controlled access to certain architectural features
of the HP 9000 Series 500 Computers so that the temptation to
code in assembly language is greatly reduced. Since the lan-
guage was used to implement the most fundamental parts of the
SUN operating system, it was designed in such a way as to be
support-free. No supporting libraries and operating system are
inherently assumed to exist by the compiler. The match between
the language and the underlying architecture is further improved
by the addition of a good compiler code optimizer, resulting in
even less temptation to resort to assembly language.

With this strategy it was possible to develop most of the soft-
ware modules which make up the system, At the end of the
project more than 96% of the system software had been coded
in MODCAL. This percentage included the results of extensive
tuning efforts in which modules found to be critical to the perfor-
mance of the machine were recoded in Series 500 assembly
language. This overall stategy not only improved the productivity
of the development team, but also resulted in a product with
much better software reliability and maintainability.

Although it was possible to test higher-level modules by execut-
ing them on another system with simulated lower-level routines,
it became apparent that the only acceptable way to check out
lower-level, architecturally dependent software was to run the
code in an environment that fully duplicated the characteristics
of the final system. This requirement was especially critical for
testing I/O driver code. Not only did it require the duplication of
the CPU and I/O processor functions, but also the semantics of
an /O device.

To allow all parts of the system to complete testing and inte-
gration before the availability of functioning hardware, a detailed
software emulator of the Model 520 was built. This emulator in-
cludes detailed modeling of all parts of the CPU,' memeory con-
troller, and most significantly, the I/O processor® and backplane.

The HP 9845 Computer, configured with an assembly language
development ROM, was selected as the engine for the emulator.
The friendliness of the assembly language development environ-
ment allowed high productivity during the emulator development.
The memory system of the HP 9845 was sufficiently large (500K
bytes) and the overall system cost was low enough to allow
several systems to be purchased for the emulation function. The
last consideration was of extreme importance since the operation
of the emulator is by necessity very computation-intensive and
one or two copies of the emulator executing on a timesharing
system would have completely consumed the system’s proces-
sor. Furthermore, the HP 9845 was also used as a MODCAL
development station, allowing a complete development station
to exist on an engineer's desk.

The emulator was implemented in stages. The functionality of
the CPU registers and a sufficient fraction of the instruction set
to allow the lowest levels of the operating system to be coded
and tested were provided first. This allowed most of the operating

system kernel to be tested sufficiently to ready it for integration
with partially tested higher-level software. Work on the emulator
then continued to implement the instruction set more completely
by including floating-point instructions and all instructions emitted
by the MODCAL compiler. Most of the BASIC software system
could be tested with the exception of the I/O drivers, file system,
and human interface. A temporary |/O interface was added which
allowed simple read and print I/O to take place to the keyboard
and display of the HP 9845,

Next, the complete I/O processor and I/O backplane emula-
tions were added. This consisted of software to model the state
of the /O processor connected to an external device which pro-
vided the hardware simulation of the new /O backplane of the
Model 520. Simulation of I/O device semantics could then be
provided by actual /O devices. This approach worked well for
devices that were available for use, but a number of I/O devices
were still under development. A capability was added that al-
lowed software simulation of these unavailable devices,

Code was added to the emulator to capture dynamic measures
of Instruction and memory access mode use. The execution
monitor function supported by these additions allowed the soft-
ware development team 1o evaluate coding alternatives and to
begin tuning the system before hardware was available. The
functionality of the emulator was tested during its development
by a battery of architectural verification tests which were de-
veloped in parallel with the emulator. These tests not only served
as a cross check on the correctness of the emulator, but they
were also used as verification tests for the NMOS-II| chips when
preliminary versions became available.

The finished emulator allowed complete integration of all com-
ponents of the Model 520's BASIC system, inciuding the human
interface and I/O drivers. The execution rate of the software was
1000 times slower than real time, but was sufficient to allow
BASIC statements to be stored at the rate of one every 20 sec-
onds. At this point some of the software modules were sufficiently
stable to allow the start of guality assurance testing.

Finally the hardware was ready. The 350K-byte BASIC operat-
ing system was loaded into the prototype and the system was
functional. The parallel development strategy was successful.

Acknowledgments

The parallel development strategy was made possible be-
cause of the efforts of Marcel Meier and Bruce Rodean who
constructed the battery of architectural verification tests and
helped debug the /O system, Eric Nelson and Craig Robinson
who provided the HP-9845-bus-to-HP-9000-bus adapter, Jeff
Eastman, Roger Ison, Scott Wang, Karl Jensen, Mike McCarthy,
Tim Tillson, Tom Lane, Mike Connor, and others who provided
the MODCAL development environment, and Bill Eads and Mike
Kolesar who provided a supportive management environment.

References

1. KP. Burkhart, et al. "An 18-MHz, 32-Bit VLSI Microprocessor,” Hewlgtt-Packard
Journal, Vol. 34, no. B, August 1883

2 CG, Lob, et al, "High-Performance VLS!I Memory System," ibid

3 F.l Gross W.S. Jaffe, and D.R Weiss, "VLSI /O Processor for a 32-Bit Computer
System," ibid.

-Benjamin D. Osecky
-Dennis D. Georg

30 HEWLETT-PACKARD JOLIRNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

Other tvpes of objects can be allocated by calls to the
operating system. Buffers are contiguous sections of mem-
ory that are guaranteed never to be relocated and can there-
fore be referenced by using absolute addresses. Buffers are
mainly used by the VO part of SUN as temporary holders
of data being transferred either to or from an IO device.

A message link is a queue receptacle to which messages
can be sent and from which messages can be received.
Message links are allocated by SUN from a segment that
exists in the context of the system partition.

Resources allocated from the system partition have global
addressability since all partitions see the system address
space as part of their address space. Resources allocated
in partitions other than the system partition cannot be ad-
dressed from other user partitions. The ability to address
user partitions is provided to system processes via the pro-
cedure CHANGE_TO_PARTITION, which establishes user ac-
cess to the specified partition.

Virtual Memory

The operating system provides support for virtual mem-
ory used in HP-UX in the form of both segmentation and
paging. Virtual segments are treated as indivisible entities
of variable length that can be swapped to a storage device
when not in use. Virtual objects can also be allocated in
paged external data segments which are divided into equal
pieces called pages. Each page can reside in physical mem-
ory independent of the other pages that make up the object.
Virtual segmented objects can be up to 500K bytes in size,
while virtual paged objects can be up to 500M bytes.

The hardware provides indicators for each virtual object,
allowing the operating system to determine if the object is
currently in physical memory, and if it is, to determine
whether the object has been referenced and/or modified.
The operating system uses this information in its replace-
ment algorithms to choose segments or pages to be removed
from physical memory when necessary.

The operating system supports the sharing of virtual ob-
jects among several processes, It also supports the mapping
of files into virtual objects, thus providing access to a mapped
file at memory speeds. Virtual objects can also be locked
in physical memory to prevent relocation during VO trans-
fers to or from the object.

Communications

SUN and the language and applications subsystems sup-
ported by it are sets of communicating processes. The initial
process within the user context is free to develop an arbi-
trary set of processes. No structure is imposed on the pro-
cess set within user partition contexts. However, all pro-
cesses within a partition context share a global data seg-
ment and other segments that they can commonly address.

The simplest form of communication occurs at process
creation when a single-segment relative pointer is passed
as a parameter to the program to be executed in the new
process context. This pointer can have no value or can
point to an arbitrary parameter structure. This level of com-
munication is similar to the parameter passing that occurs
when one procedure calls another procedure within the
same process context.

Processes executing within the same partition context

can share data in the global data segment or other external
data segments defined in their common segment table. All
processes can share data in segments defined in the system
segment table. Pointers to shared data or the shared data
itself are stored in global data segments that are common
to the communicating processes.

In addition to supporting communication via inter-
process parameter passing and shared data in global data
segments, SUN supports communication via message pass-
ing. This support is provided by the message manager com-
ponent. The message manager supports interprocess global
communication by allowing one process to construct a
packet of information called a message, send that message
to a mailbox, and have a different process at an later time
receive the message from the same mailbox. Processes com-
municating via messages can exist either in the same or
different partition contexts. All that is required to initiate
the communication is knowledge of a common message
mailbox name, which SUN refers to as a message link.

Synchronization and Scheduling

Semaphores and semaphore operations are used to syn-
chronize and coordinate processes. A semaphore is im-
plemented as a two-word data structure that can be allo-
cated anywhere that can be commonly addressed by the
synchronizing processes, There is no limit on the number
of semaphores that can exist in the system. They are used
to protect and provide exclusive access to shared data and
to block a process until signaled by another process.

The semaphore operations are designed to be safe in a
multiple-processor environment. By safe, it is meant that
the operations on semaphore data objects are guaranteed
to be indivisible and complete regardless of the number of
processors in the system. A more complete description of
the operation of the process synchronization primitives
can be found in the article on page 34.

SUN also provides procedures for synchronizing pro-
cesses with time. These procedures allow processes to wait
for a specified time interval or to wait until a specified
absolute time. Absolute times and intervals are specified
as floating-point numbers in units of microseconds.

At any time, all processes can be divided into two groups:
runable and blocked. In addition, a subset of the runable
processes is actually executing on the CPUs of the system.
In a system with n CPUs, up to n processes can be executing
at the same time. Processes become blocked by explicitly
downing a semaphore, attempting to receive a message
that has not yet arrived, or waiting on a timer.

The SUN operating system supports sets of subsystems
that, in general, have more processes to be run than proces-
sors. The dispatcher provided by the operating system is
responsible for selecting runable processes to be executed
by the CPUs based on process priority. Entry to the dis-
patcher occurs whenever a dispatch instruction (DISP) has
been executed and the current state of the system allows
the dispatcher to be entered. The DISP instruction is exe-
cuted by process synchronization and manipulation primi-
tives when the state of a process is modified. In particular,
the dispatcher is entered whenever a currently executing
process is blocked, when a process that is of higher priority
than a currently running process is made runable, or when

MARCH 1084 HEWLETT-PACKARD JOURNAL 31

© Copr. 1949-1998 Hewlett-Packard Co.

For the VLSI chip set used in the HP 9000 Series 500 Comput-
ers, two available levels of debugging evolved. The low-level
capability uses a separate HP 9845 running a huge BASIC pro-
gram, attached to another electronic tool, which in turn connects
to the NMOS-III CPU or I/0 processor debug ports. The high-level
debugger is a large software package that is linked with an
operating system. It uses debugging support tools built into the
microcode to help programmers debug that system.

Major Features

The debugger supports stepping, breaking, and profiling at
the procedure, statement, and machine instruction levels,
examines and changes memory and I/O in a variety of ways,
disassembles machine instructions, dumps process status, pro-
cedure chains, CPU registers, stacks, and variables, executes
procedures, prints hard-copy audit trails, and passes control to
user-defined debugging software.

The debugger is menu-driven. Most command prompts are
less than one line long. Each command is a single letter that is
accepled as soon as itis typed. Given the speed of the underlying
hardware, this makes for a responsive, natural-feeling human
interface which combines the best of both menu and command
line styles. Novices find the debugger easy to use for quick,
simple interactions. Experienced users tend to learn short com-
mand sequences that accomplish commaon operations.

The menus range in length from short (two options) to quite
long (twelve options at the top level). Most functions are only two
or three levels deep, and every menu but the top one can be
exited by typing O (options).

Most menu lines are cleared after the user responds, which
keeps the visual clutter to a minimum. When multiple-character
input is required, the debugger requests it between menus in

A System Software Debugger

as compact a form as possible.

The first four options—Pstep, Step, Focus, and Resume—on the
top level resume the current process, either stepping at the pro-
cedure, statement, or machine instruction levels, or resuming
execution with no change of debug state. The Break option sup-
ports maintenance of procedure, source statement, machine in-
struction, memory location, and external process breakpoints.
Machine instruction breakpoints can be local (one process only)
or global (all processes). Clear sets the state of the debugger to
free-run.

The Exam option leads to a powerful memory and I/O access
capability. For examining memory, it first allows the user to specify
the initial memory location in one of a number of ways, either as
an absolute address, relative to various data registers and seg-
ments, or by variable name or program location. Then it supports
forward and backward stepping through and jumping around
memeory, going indirectly through data and absolute pointers
(with a return stack), modifying locations, and viewing arbitrary
byte sequences. Meanwhile, the Exam lo option supports simple
/O requests and status displays.

The Dump option capabilities include task status, accumulated
CPU use by processes, procedure calling chains, CPU registers,
and stack and variable dumps. The eXec option allows users to
call any procedure in memory, with a specified parameter list,
under debugger control. The Toggle option controls debugger
modes, including partial and full hard-copy audit trail printing.
The Meas option interacts with the optional procedure, source
statement, and machine instruction execution and coverage
monitor (profiler).

Finally, the twelfth option, Ud, leads to a user-defined debugger,
if one is present. Software authors can easily write their own
extensions and plug them in at link time.

the priority of a currently running process is changed. This
ensures that the highest-priority process in the set of run-
able processes is selected for execution.

The dispatcher completes the state-saving operation in-
itiated by the DISP instruction, selects the highest-priority
runable process, marks the selected process as running,
restores a subset of the hardware registers based on values
stored in the task control block associated with the selected
process, and executes an interrupt exit (IXIT) instruction.
The IXIT instruction causes the remainder of the hardware
state to be restored and process execution to resume.

Interrupt Handling

The normal flow of the execution of the machine instruc-
tions can be modified by three mechanisms: external inter-
rupts, internal interrupts, and traps. External interrupts
signal requests for service by /O devices. Internal inter-
rupts signal abnormal conditions within the system that
are not associated with the execution of a machine instruc-
tion. Traps differ from interrupts in that traps result from
conditions detected by the hardware during the execution
of an instruction. The detailed handling of interrupts and
traps is done by the operating system,

The hardware defines 16 priority levels that can be as-
signed to each /O channel. The interrupt structure is such
that a higher-priority device preempts a lower-priority de-

32 HEWLETT-PACKARD JOURNAL MARCH 1384

vice. Furthermore, a special hardware register, called the
mask register, can be used for the purpose of masking off
specific priority levels. The initial handling of external
interrupts is done by the CPU microcode interrupt handler.
The interrupt handler is executed on behalf of a particular
device when all of the following conditions are met: 1) the
device has requested an interrupt, 2) interrupts at the de-
vice's priority level are not masked, 3) the interrupt bit in
the status register is enabled, and 4) no higher-priority
device is requesting service.

The interrupt handler initially saves the state of the
machine by pushing a stack marker onto the stack segment
for the currently executing process. The stack marker con-
tains the information necessary to restore the status of the
interrupted process, and hence allow execution to resume
later. The information includes the index register value,
the address of the first instruction to be executed when the
machine status is restored, the machine status indication
register, and a pointer to the previous stack marker.

External interrupts are handled on a special stack seg-
ment called the interrupt control stack. In this case, the
CPU registers are modified to point to different stack and
global data segments before the execution of the interrupt
service routine. Before this register modification, the values
of the registers associated with the interrupted process are
saved in the process’ task control block and stack segment

© Copr. 1949-1998 Hewlett-Packard Co.

The debugger contains a complete user /O facility for
keyboard input and dispiay and optional hard-copy output. Like
most parts: of the debugger, this code is as independent as
possible of any particular operating system implementation

Most of the debugger I/O and mode-control routines (about
34 in all) are exported to the rest of the system software. This is
especially invaluable for debugging system /O software and for
supporting miscellaneous test hamesses.

The debugger includes two optional packages which can be
included at link time. If the disassembler is present, all displays
of code are disassembled while examining, dumping, or step-
ping. I the execution monitor (profiler) is present, the Meas option

| comes alive, adding a number of features

The debugger is part symbolic. Compile-time options permit
each procedure to be followed by a short symbol table, including
a procedure name and possibly variable names and locations.
If this information is present, the debugger uses it wherever it
can. Debugging of “nondebuggable” procedures is still possible,
but procedure and variable information is entered and displayed
strictly by numeric address.

Implementation

This debugger is intraprocess, not interprocess. Rather than
occupying one or more dedicated debugging processes that
interact with others, the debugger is inactive until invoked. If the
debugger is present, every process has a small amount of space
(about 240 bytes) set aside at the base of its stack for permanent
| debugger variables. The debugger uses almost no other data
storage.

When activated, the debugger runs on top of whatever process
invokes it. To ensure a stable environment, it turns off interrupts,
takes exclusive control of the machine (pausing all other CPUs),
and is careful not to relinguish that control until exited.

The operating systems supply a limited number of speciai
support routines to help the debugger gather information about
and control other processes and operaling system data struc-
tures. These routines help insulate the operating system and
debugger from each other, maximizing independence.

The VLS! chip microcode provides a handy set of debugger
support features. There are a number of special assembly instruc-
tions which, when enabled, cause software traps that lead to the
debugger (if present). These instructions are planted in debug-
gable code by the compiler and enabled by the debugger on 2
process-local basis as needed for simple, efficient procedure
and source statement stepping. Since the status register does
the enabling/disabling, the debugger state becomes a part of
the process state. The CPU microcode also supports machine
instruction stepping and a single absolute-address break regis-
ter, both of which operate through the trap mechanism

The debugger is linked with one of a number of low-level /O
driver modules, each of which provides the same exported pro-
cedure names. These modules allow the debugger to run on an
emulator, or on real hardware with the Model 520's keyboard
and its various display options, or via an AS| or multiplexer card
connected to a dedicated terminal.

Acknowledgments

Several people contributed to the development of the debug-
ger. Tim Tillson developed the original concepts and first seven
revisions, Dan Osecky and Bob Bury provided operating system
support, Fred Richart contributed to the initial disassembler, Mar-
cel Meier provided I/O driver assistance and contributed to the
initial disassembler, and Gary Fritz developed the low-level
execution monitor.

-Alan Silverstein

so that they can be restored before the process resumes.

The interrupt handler writes the device number of the
device requesting service onto the interrupt control stack
at a known location. The device number serves as an index
into the device reference table, which contains an entry
for each I/O channel. The device reference table entry for
a requesting I/O device is chained by an /O processor onto
a queue corresponding to the priority of the device to await
service by a CPU. Each device reference table entry contains
a pointer to the interrupt service routine, and a pointer to
the data relevant to that /O channel.

The SUN operating system contains a single main inter-
rupt service routine. Device driver procedures are executed
by system and user processes as a result of input/output
requests. When a device driver procedure wants to wait
for an interrupt, the procedure calls a special operating
system primitive which executes a DOWN operation on a
semaphore associated with the device, thereby blocking
the executing process. The interrupt service routine does
an UP operation on a semaphore associated with the device
driver procedure that handles interrupts for the interrupt-
ing device, and thus unblocks the process which had been
waiting for the interrupt. The interrupt service routine exe-
cutes an IXIT instruction which may force the execution of
the dispatcher if the freed process is of higher priority than
the currently executing process. If the unblocked process
is not dispatched, then the state of the interrupted process
is restored and its execution continues.

The hardware detects 45 different traps, or exception
conditions. These traps are catagorized into seven classes
by the operating system to make exception handling more
manageable. The seven classes are system, address, pro-
gram, instruction, stack overflow, trace, and debug traps.
System traps include absent segment and absent page traps,
and other traps that support virtual memory.

The trap manager component enables traps other than
system traps to be handled by the higher-level subsystems
in a hierarchical manner. Trap handling routines can be
specified that apply to a specific process, to all processes
in a given partition, or to all processes in the system. Trap
handlers installed at the process level have the option of
either handling the exception and returning to the inter-
rupted process or referring the trap to the partition level.
Similarly, partition level trap handlers can optionally refer
handling to the system level.

Protection

The subsystems supported by the SUN operating system
benefit from the protection of system integrity supported
by the hardware as well as the protection provided by SUN
itself. The protection provided by the hardware falls into
three categories: segment bounds checking, mode checking,
and segment attribute checking.

All segment (data or code) references are checked by the
hardware to ensure that the references are within the
bounds of the segment. Furthermore, any attempt to write

MARCH 1984 HEWLETT-PACKARD JOURNAL 33

© Copr. 1949-1998 Hewlett-Packard Co.

to a segment is checked to ensure that the segment is writ-
able. All segments also have an attribute that indicates if
the segment can be accessed by code that is designated as
unprivileged. This prevents user processes from directly
executing code that is strictly for internal system use. Any
violations are detected by the hardware and cause traps.
The operating system provides protection beyond that
provided by the hardware by providing an independent
partition segment table for each user partition context. Seg-
ment accesses within a partition are limited to segments
within the system segment table and to segments within
the segment table local to the partition. In addition, SUN

provides addressability checks at critical points in the
execution of its procedures.

Acknowledgments

Several people contributed to the development of the
SUN operating system. Among them, the major con-
tributors were Marcel Meier, Bob Bury, Charlie Mear, and
Bob Lenk.

Reference
1,].G. Fiasconaro, “'Instruction Set for a Single-Chip 32-Bit Proces-
sor,” Hewlett-Packard Journal, Vol. 34, no. 8, August 1983.

The Design of a General-Purpose Multiple-

Processor System

by Benjamin D. Osecky, Dennis D. Georg, and Robert J. Bury

products have contained multiple-processor config-

urations, none has been able to bring the full power
and flexibility of these processors to bear in solving user
problems. For instance, the HP 9845B Computer contains
an identical pair of 16-bit processors with shared memory.
However, the system architecture constrains one processor
to handle the computational parts of a user’s program while
the other processor, which accesses only the I/0O bus, man-
ages the input/output and other operating system functions.
Although this partitioning of functions provides a perfor-
mance advantage over a single processor for applications
in which the requirements for /O and computation are
relatively balanced, the configuration does little to improve
the performance of strictly computational or mostly I/O-
oriented workloads.

Many other multiple-processor systems exhibit forms of
asymmetry between their computation and input/output
functions which are a result of either their hardware or
their software architecture. On some systems a particular
/O device can be accessed by only a subset of the proces-
sors, Communication with such a device requires either
complex communication protocols between the asymmet-
ric processors or constrained execution of the user program
on the processor subset. Other multiple-processor systems
allow only a single processor at a time to execute operating
system code.

a LTHOUGH A NUMBER of earlier Hewlett-Packard

Hardware Design

The hardware architecture of the HP 9000 Series 500
Computers has been designed to provide fora fully symmet-
ric multiple-processor architecture. All CPUs, I/O proces-
sors, and memory controllers are interconnected by the
memory processor bus. All I/O processors and memory are

34 HEWLETT-PACKARD JOURNAL MARCH 1984

identically addressable by all CPUs. This implies that a
program can execute on any of the system’s processors
without any changes to the way the system addresses either
memory or /O devices. Perhaps equally important is the
fact that all I/O processors have an equally symmetric view
of CPUs and memory. This makes it possible for a program
to initiate an 1/0 operation on one processor, for the inter-
rupt service routine to execute on the same or a different
processor, and for the user program to continue on a third
processor, all with complete transparency.

This symmetry is also exploited to improve system relia-
bility. When the system is turned on, the processor compo-
nents perform a self-test and report their results to one of
the processors which is temporarily designated as a master.
This master CPU begins the execution of operating system
code that determines the number of system components
that have passed their self-tests and configures the system
based on these working components. Once the system has
been configured, the distinction of the master CPU is can-
celed and the system begins normal operation, except for a
possible loss of capacity caused by any failed components.

For a multiple-processor system to be able to deliver a
significant performance improvement over a single proces-
sor, each processor in the system must be provided with
sufficient bandwidth to the system memory. In the HP 8000
Series 500 Computers, the memory processor bus provides
a bandwidth of 36M bytes per second. The memory con-
trollers are fully pipelined and are capable of responding
to arbitrary reference strings at this maximum bandwidth.
Measurements of the bandwidth consumed by a single
Series 500 processor indicate that the average consumption
is approximately 9M bytes/s.

Another important hardware characteristic is a test-and-
set operator that is atomic (indivisible) with respect to mul-

© Copr. 1949-1998 Hewlett-Packard Co.

Segment Table

Task Control Block

User Code
Segment Table

User Data
Segment Table

Stack GDS

Segment | Segment
Number @ | Number S g

3

g
]

)

%l!

Next Instruction
STT

STT Length

1L

[

tiple-processor execution. This operator is provided by the
memory controller to allow the execution of a special re-
quest that indivisibly reads and sets a selected word in
main memory to a predetermined value. This operator
serves as a building block for constructing more complex
synchronization operators in software. This hardware
operator is also used by the CPUs when accessing certain
table structures known to the hardware, such as page tables.
This allows synchronization of access among processors,
and between processors and the operating system software,
called SUN, when the table entries must be modified.

Another important characteristic is the ability to share
the same image of an executing program between two or
more processors. This is done by providing an architecture
in which all code is reentrant, Code is protected from mod-
ification by the hardware. This allows a single image of
the operating system to be shared by all processors in the
system and also allows several processors to be active in
the operating system code simultaneously.

Finally, since the SUN operating system was designed
at the same time as the hardware, it was possible to make
many hardware/software tradeoffs to improve the perfor-
mance of SUN. The processor instruction set provides con-
siderable assistance by saving and restoring process states
during process switching. Fig. 1 illustrates the process state
known by the hardware. The task control block is selected
by a processor register. Information contained in this block
identifies a process’ address space, stack segment and
global data segment through either system or user segment
table entries. The process stack contains information at its
base that allows setting the stack limits and the current
frame pointer. Absorbing the topmost stack frame allows
information about the process' code segment and register
state to be established. This entire procedure is accom-
plished by the IXIT instruction. This instruction and the

|
i

to SB

®

1l il
F

Local
Variables

Functional Resull

Parameler

Stack
Jer's Status LU

v

w

Cal

o

Local Variables
Evaluation Stack
Avallable Space

-

Fig. 1. Process state as seen by
the Series 500 hardware.

complementary state-saving operations combine to provide
fast process context switching times.

Software Design

Each process in the system has its own task control block
and stack segment. The information contained in the task
control block includes process state information which is
known to the hardware as well as an extended process
state maintained by the system software. The state informa-
tion known to the hardware includes the specification of
the user’s address space, stack, and global data segment as
described above. The software state includes the process
priority, its dispatching state, fields to allow the process
to be queued on a semaphore, a specification of action to
be taken in the event of an exception condition, and a list
of objects owned by the process.

The process priority indicates the relative priority of
execution of nonblocked processes. The highest-priority
process not blocked on a semaphore is always allocated a
processor. If a lower-priority process is running and a
higher-priority process becomes ready because of some
event such as the completion of an /O operation, the lower-
priority process is suspended and the higher-priority pro-
cess is given a processor. This mode of scheduling in which
a higher-priority process can preempt a lower-priority pro-
cess is referred to as preemptive scheduling. The system
software was designed to be preemptable in all but a few
small code sections.

The dispatching state indicates whether a process is wait-
ing on a semaphore or a timer, ready for execution, or
already running on a processor. The address space indi-
cates which virtual address space contains the memory
objects local to the process. System processes often coexist
within the same address space and communicate directly
using shared-memory techniques. User processes for both

MARCH 1984 HEWLETT-PACKARD JOURNAL 35

© Copr. 1949-1998 Hewlett-Packard Co.

HP-UX and BASIC systems each exist within their own
address space, which can be up to 512 megabytes. Every
process also has access to the system address space, which
can also be as large as 512 megabytes.

Three different mechanisms are provided to allow the
synchronization of process activities: locks, semaphores
and message passing. A lock provides the short-term ex-
clusion mechanism normally provided by disabling inter-
rupts while in a critical section on a single-processor sys-
tem. This same effect is accomplished on a multiple-proces-
sor system by performing a special code sequence on a
memory word, referred to as a lock word, that is associated
with the critical section in question. The exclusion opera-
tion is performed by executing the instruction read and set
to —1 and testing the result. If the result is not equal to
minus one, the lock has been obtained and the critical
section can be executed. If the lock value is already minus
one, the processor must retry the indivisible read and set to
—1 instruction until a nonnegative value is read. It is then
assured that no other processor is active in the critical
section. When the processor has reached the end of the
critical section, it stores a zero back into the lock word to
indicate that the critical section can now be entered by
another processor. This locking mechanism is used many
places in the system where exclusion is required for a code
sequence that is short and does not execute any operations
that cause the process to be blocked.

A more general process synchronization tool is provided
by semaphore operations. The implementation of sema-
phores is similar to that proposed by Dijkstra.' A semaphore
is a two-word area in memory that contains a value and a
pointer to a linked list of processes. Semaphores can be
allocated in memory anywhere that other data structures
can be allocated, and there is no limit on the number of
semaphores. Two operators are provided for semaphores:
DOWN and UP. A DOWN operator applied to a semaphore
with a value greater than zero merely decrements the value
associated with the semaphore. If the value is less than or
equal to zero, the value is still decremented, but the process’
state is marked blocked and the process’ task control block
is added to the queue of waiting processes associated with
the semaphore in order of priority. The UP operator incre-
ments the value of the semaphaore. If the initial value of
the semaphore is less than zero and an UP operation occurs,
the first process waiting on the queue is marked as ready.
If the process marked ready is of higher priority than the
process executing the UP operator, the processor is given
to the higher-priority process.

Serialization can be provided for a critical section by
associating with it a semaphore initialized to a value of
one and providing a DOWN operator at the beginning of the
critical section followed by an UP operator at the end of
the critical section. Synchronization with a server process
is usually accomplished with a semaphore initialized to a
value of zero.

The word used as the head of the queue of tasks blocked
on a semaphore also serves as a lock word to guarantee
proper operation of the semaphore in a multiple-processor
system. Since there is a separate lock word for every
semaphore in the system, the probability of contention for
the lock is very low.

36 HEWLETT-PACKARD JOURNAL MARCH 1984

During development of the software, it was found that
considerable simplification would result by including ad-
ditional semaphore operators. The first consisted of a con-
ditional UP operator which would free all processes waiting
on a given semaphore and allow the passing of an error
escape code. This operator is especially useful in recover-
ing from an error condition detected by another process.
The second consisted of an indivisible DOWN and UP
operator which would allow a process to block itself on a
semaphore while releasing another semaphore in one indi-
visible operation.

Message passing supports interprocess global communi-
cations by allowing a process to construct a packet of infor-
mation called a message, send that message to a mailbox,
and have a different process at a later time receive the
message from the same mailbox. Message passing and mail-
boxes are used by both BASIC and HP-UX system processes
to coordinate user processes. Sending and receiving mes-
sages provides process synchronization similar to the
semaphore UP and DOWN operations, coupled with an ad-
dress-space-independent data transferral. The message
passing operations, in fact, are implemented using the
semaphore operators, which in turn use the locking concept
at the lowest level.

: . '|
Got pise Lock? |
|

Yes .LD

Was Task Running?

e Save Rest of State
e Move Task Control Block
to Queue End
« Unmark as Running ‘

Set Up Dummy Low-
Priority Task Control
Block

v Not

Search Queue for Runable Found
Touk o o reenseoor Lock |
|
- B

iFound

v
Mark Task Control Block

HRunning, Restore State

Fig. 2. Dispaicher flow chart.

© Copr. 1949-1998 Hewlett-Packard Co.

| Fig. 3. Multiple-processor perfor-
mance with a homogeneous load.
Each benchmark run consists of

Granularity*

The duration of a typical process lifetime in HP-UX,
which can last from a few tens of milliseconds to forever,
is well matched to the granularity of the underlying process
model. The BASIC system’s process model similarly is of
reasonably large granularity. The times for representative
operations for the underlying process model are:

Operation Time (us)
Process Creation 1000
Lock Type Synchronization 5
Semaphore Operation 35
Process Switch 150
Assign Free Processor 100

multiple identical copies of the
same program.

To illustrate how the overall process model is im-
plemented, consider the flowchart of the dispatcher shown
in Fig. 2. When a DOWN synchronization operation dictates
a process block, the process is marked blocked and the
special instruction DISP is executed. This causes the pro-
cess state to be saved and control to be transferred to the
beginning of the short-term scheduler routine at the dis-
patcher entry point. Upon entry, the dispatcher ensures
that just one processor at a time is active within the critical
section of the dispatcher by attempting to lock a word

*In this arficle, granularity is a measure of the size of independent operations that a
process or & program can be broken up into for parallel processing. In each case, the
performance benefits gained by parallel processing must be weighed against the system
overhead required to break up the process or the program. That is, finer granularity requires
mare overhead

Fig. 4. Performance of bench-
mark runs containing nonidentical
process loads.

MARCH 1984 HEWLETT-PACKARD JOURNAL 37

© Copr. 1949-1998 Hewlett-Packard Co.

associated with that critical section. Once inside the critical
section, the dispatcher scans the linked list of available
processes using a special hardware linked-list search in-
struction. The highest-priority process that is not blocked
and is not currently running on another processor is
selected for execution. The dispatcher’s lock word is re-
leased and the process is launched by setting the the CPU'’s
current task control block pointer to point at the selected
process. The context switch is completed by executing an
IXIT instruction as described earlier. This results in the
restoration of the state of this task and its continued execu-
tion until it is either blocked or is preempted.

If no tasks are found that are available for execution, the
dispatcher’s lock is released and the special instruction
SLEP is executed. SLEP places the processor in a state where
it is paused until the next interrupt or interprocessor mes-
sage. In this way processors that have no work to do con-
sume no bus bandwidth, yet are prepared to respond
quickly when an event indicating the possible presence of
a new runable task occurs.

Performance

The final test of the design of any multiple-processor
system is in how much improvement in performance is
provided by each additional processor. Fig. 3 shows the
results of a number of benchmark runs which were made
by running four copies of an identical benchmark on each
of four processor configurations. The programs were
selected to show the performance extremes that can be
encountered in a multiple-processor system load. The pro-
grams showing the least improvement were STRING 16K
and STRING 80B. These programs make use of the proces-
sor's block-move instructions, which are capable of moving

data from one place in memory to another at the rate of
9M bytes/s. Large and repeated block moves place a heavy
load on the memory processor bus.

The two-dimensional graphics benchmark is mostly I/O-
bound on a single processor and adding additional proces-
sors does not produce a very dramatic result. The other
benchmarks, 3D GRAPHICS, INTEGER, PCAL, and FLOAT-
ING, are respectively a three-dimensional graphics program
with I/O, an integer matrix multiply program, a very heavily
recursive program, and a floating-point matrix multiply
program. All of these loads are significantly improved by
having additional processors in the system.

Fig. 4 shows the results of tests in which groups of
nonidentical processes were run on systems containing a
varying number of processors. The results from these runs
are more uniformly clustered near the theoretical n-im-
provement-for-n-processors asymptote. This indicates that
a significant improvement is possible even for loads includ-
ing bandwidth-intensive programs such as STRING 16K as
long as they are included with programs containing more
typical instruction mixes.

Acknowledgments

We would like to acknowledge the efforts of Mike Kolesar
and Jim Fiasconaro whose careful attention to the design
of the multiple-processor aspects of the hardware made
life much easier for the software team. We would also like
to thank Bill Eads for letting us work on this project.

Reference
1. E.W, Dijkstra, “The Structure of the THE-Multiprogramming
System,” Communications of the ACM, Vol. 11, no. 5, May 1968,
pp. 341-346.

An I/O Subsystem for a 32-Bit Computer

Operating System

by Robert M. Lenk, Charles E. Mear, Jr., and Marcel E. Meier

processing for both the BASIC and HP-UX subsys-

tems in the HP 9000 Series 500 Computers posed
a significant challenge during the design of the operating
system called SUN. The BASIC language system for the
Model 520 Computer provides a rich I/O language with
support for real-time device and instrument control. HP-UX
is a multiuser system which relies very heavily on rapid
access to disc storage for loading user programs, storing
user data, and managing virtual memory. In addition, both
systems provide users with a unified, device-independent

M EETING THE DIVERSE NEEDS for input/output

38 HEWLETT-PACKARD JOURNAL MARCH 1984

/O interface to all peripheral devices and mass storage
files. SUN's I/O subsystem provides common code that
fully supports the needs of both.

The SUN I/O system consists of two primary software
components—the file system and the device drivers, The
device drivers provide a uniform high-performance inter-
tace for managing peripherals while the file system pro-
vides file management, disc memory management, and de-
vice management services to other components of the
operating system as well as to user environments such as
HP-UX and BASIC. In general, the structure of the /O sub-

© Copr. 1949-1998 Hewlett-Packard Co.

Directory Management File Management

File System

BT

l First-Level Driver
Software 'O Primitives

Hardware

'O Processor (10P)

[ovecior Srvcre | e |

system (Fig. 1) mirrors the functionality of the hardware.

File System

The basic unit of disc storage managed by the file system
is called a volume. Each volume has a slave process that
performs all the /O to the volume. The creation of a sepa-
rate, transparent process allows physical /O to be per-
formed concurrently with other tasks and provides a
mechanism whereby /O requests can be scheduled in the
most efficient manner possible. Volumes have self-con-
tained data structures upon which files and directories are
implemented. Directories, which map filenames into files,
are managed solely by the file system while the interpreta-
tion of the contents of files is left to higher-level software.
Multiple Disc Formats. The file system supports file man-
agement of three different disc formats: HP’s Logical Inter-
change Format (LIF), the disc format used by the HP 9825,
HP 9835, and HP 9845 family of computers, and the Struc-
tured Directory Format (SDF). The support for multiple
disc formats was motivated by the desire to provide file
interchange capability with other HP systems, to access
discs initialized on earlier HP computers (backward com-
patibility), and to provide additional capability not sup-
ported by either the LIF or HP 9845 formats. The support
for multiple disc formats does not introduce additional
overhead to the file system.

A distinct software module manages each of the three
formats. A common interface hides the disc format differ-
ences from other file system software and the BASIC sub-
system. When a disc is first accessed, the file system iden-
tifies the disc by the contents of block 0 on the disc and
installs the correct software module to manage its structure.
The file system returns an error if the caller attempts to
use a feature not supported by the particular disc format,
but otherwise no distinction between formats can be made
by the application. Because of its extended capability, HP-
UX supports only SDF as its root file system. However,
HP-UX applications can access LIF discs through standard
utility programs.

SDF supports capabilities beyond those of the other two
disc formats. Among them are extensible files, hierarchical
file naming, file links, extensible directories, mounted vol-
umes, device files, remote file access support, and HP-UX
file protection mechanisms.

Each file on an SDF volume is described by a 128-byte
file control block (FCB), similar to the UNIX™ inode. The

UNIX is a U5 rrademark of Bell Laboratories

Drivers

4

Fig. 1. The SUN operating sys-
tem's I/O subsystem.

FCB contains information about where the file resides on
the disc, when it was last created, accessed, and modified,
and how its use should be restricted. Disc space is allocated
to the file in contiguous areas called extents (identified by
the address of the first block of the disc area and its size).
This form of representation enables large, high-speed trans-
fers between the disc and the memory, supports large files
efficiently, and allows the amount of disc space allocated
to the file to change dvnamically.

To support the needs of both the BASIC and the HP-UX
systems, a portion of the FCB is reserved for private use
by the subsystem that created the file. HP-UX, for example,
uses this private data area to implement device files and
HP-UX-style file protection semantics.

Caching for Improved Performance. The file system uses
a pool of equal-size buffers (buffer cache) to improve disc
access performance, When data is read from the disc, it is
placed and kept in the buffer cache. When a subsequent
request is made for the same data, it can be retrieved from
the cache without requiring any physical I/O operation.
Accessing data in the cache is more than an order of mag-
nitude faster than obtaining the same data from the disc.

The number of buffers in the cache is determined when
the system is initialized. Eventually the contents of one or
more buffers has to be discarded to read new data from the
disc (data not found in the cache). In this event, the cache
buffer that has been least recently accessed is chosen.

The cache is also used to improve performance in other
ways. When sequential access to a file is detected, the file
system prereads data from the file in anticipation of the
next read request. The data is then kept in the cache until
it is needed. The I/O required for the read is performed
concurrently with the running of the application program.
By prereading data, the file system overlaps CPU processing
with /O device time, thereby reducing the total time it
takes to run an application.

A large portion of the time needed to move data to and
from the disc is spent waiting for the disc to prepare for
the transfer. The actual transfer of data takes much less
time. The file system transfers as much data as possible on
each disc read/write. When prereading data, several buffers
of data are read from the disc with one transfer. The cache
also allows a file’s dirty buffers (buffers that must be written
back to the disc because their contents have been modified)
to be gathered together and written to the disc in a single
transfer,

MARCH 1884 HEWLETT-PACKARD JOURNAL 39

© Copr. 1949-1998 Hewlett-Packard Co.

Virtual Memory Support. Since many HP-UX systems are
configured with only one disc, the file system must handle
file management and virtual memory support together on
a single volume. Each disc format module has entry points
that the virtual memory system uses to allocate and deallo-
cate disc blocks. These same high-speed disc space manage-
ment routines are used by the file system to allocate disc
space for directories and files. Disc storage is fully shared
between the file system and the virtual memory system.
The physical I/O generated by the virtual memory system
as a result of paging and segment swapping does not move
through the cache, because the virtual memory system does
its own caching through sophisticated page and segment
replacement algorithms. This I/O is sent directly to a vol-
ume'’s /O process. The file system and virtual memory
system together support the concept of a memory-mapped
file. Files can be mapped onto a virtual segment and ac-
cessed through a pointer. Once mapped, the virtual seg-
ment contains an image of the file. Changes to the address
space represent changes to the file and vice versa. This
farm of access is sometimes more convenient than standard
file access routines and can, in certain applications, result
in improved file access performance.

Transparent Device I/0O. Transparent device /O for HP-UX
is supported through device files, which contain informa-
tion about the location of a device (possibly logical) in the
system, and the manner in which the device and system
must communicate. These special files are opened and ac-
cessed in the same manner as other files. Their I/O, how-
ever, is directed to the appropriate device.

Drivers

The underlying philosophy behind the driver architec-
ture is that each piece of hardware is encapsulated by a
separate module. A typical I/O operation involves three
separate pieces of hardware: an /O processor, an interface
card, and a peripheral device.! Thus, the driver implemen-
tation includes modules in three layers—I/O primitives,
first-level drivers, and second-level drivers. This allows
drivers to be mixed and matched for appropriate tasks with-
out duplicating functions. Thus, all peripherals, whether
discs, tape drives, line printers, or voltmeters, can share
the same HP-IB (IEEE 488) interface card first-level driver,
while a single CS-80 protocol second-level driver can suf-
fice both for HP-IB-based discs and the internal discs on
the Series 500’s integrated workstation, the Model 520 (see
Fig. 2). Because of this modularity, the potential also exists
to move any first-level driver to other machines where the
same interface cards are present on different [/O channels,
or to move any second-level driver to other machines where
the same peripherals use different interface cards.

Each of the three layers invokes the one below it through
a procedure call. This keeps the overhead of the modulari-
zation to a minimum. However, in special cases where
even this overhead is considered excessive, an individual
driver module crosses these conceptual layers to optimize
performance. A primary example of such an optimization
is a special driver to do fast reads and writes of CS-80 discs
on the HP-IB interface.

The modular driver organization allows software to be
configured to match precisely the hardware on which it

40 HEWLETT-PACKARD JOURNAL MARCH 1984

runs. A minimal software system contains only the I/O
primitives and the drivers necessary for a minimal
hardware configuration without wasting kernel code space
on unnecessary modules. As more hardware is added, the
corresponding drivers are added to the software. All global
system tables of drivers and devices are built dynamically
by the modules that are present at system boot, rather than
being compiled into a central part of the code or requiring
a complicated system generation activity. Hence, the addi-
tion of drivers does not require any recompilation or relink-
ing of the system; it is accomplished by simply merging
the driver code into the system boot area in HP-UX and
rebooting, or by executing the LOAD BIN command in BASIC.
The same ability to configure modules into the system is
used by the file system for the modules that manage differ-
ent disc formats, and by other subsystems outside of I/O.
1/O Primitives. The primary purpose of the /O primitives
module is to encapsulate the interface to the I/O processor
and the services it provides. These services include direct
memory access (DMA) transfers across the backplane, pass-
ing interrupts to the CPU, and running channel programs
(lists of I/O operations which are run by the 1/O processor
without CPU intervention). These services are presented
to the drivers as routines that are independent of the nature
of the 1/O processor, such as setting up a DMA transfer or
waiting for the interrupt at its completion. A few of these
routines that are simple but frequently executed are im-
plemented with special compiler support by in-line expan-
sion in the calling driver’s code.

There are other tasks which, though not directly related
to the I/O processor, are common to several drivers, and
thus are also included at the primitives layer. For example,
the primitives module examines all /O slots at system in-
itialization to determine which interfaces are present. This
is an essential part of the self-configuration process, be-
cause it allows each first-level driver to select which in-
terface cards are appropriate for it to address without
any knowledge of the behavior of other cards that may
be present.

The primitives also provide for resource allocation
among drivers to prevent multiple requests from interfering
with one another. This is generally handled by providing
mutual exclusion to each I/O slot, but it also involves the
length of request. For shorter requests, interfaces such as
terminal multiplexers allow multiple outstanding requests
with certain restrictions, which are enforced by the primi-
tives. For longer requests, each 1/0 processor has

Voltmeter Access User II.'Jist: Access

\ 4
S0 O Drivey Chosen based on the 1'O card

| | «——seen in the specified slot
A 4) 4 v

CIO HP-IB Card

v v
Voltmeter CS-80 Disc Drive

Fig. 2. Driver structure for HP 9000 Model 520 Computer

© Copr. 1949-1998 Hewlett-Packard Co.

bandwidth limitations, and in rare instances it is possible
for a high-speed device to lock out a synchronous device
on a separate slot. The primitives provide mutual exclusion
between such incompatible devices on the same I/O proces-
SOT.

HP-CIO. The HP 9000 Series 500 Computers are the first
HP products to support HP’s new family of interface cards,
known as HP Channel I/O (HP-CIO). Each card in this family
shares several levels of protocol, some of which communi-
cate fairly complex tasks between the host computer and
a microprocessor on the card. The card’s microprocessor
can perform such tasks as searching input streams for a
termination character, or editing lines of text input from a
terminal. Much of this protocol is encapsulated at the
primitives level, allowing not only a sharing of code among
drivers, but also efficient implementation of the protocol
by matching it carefully to the I/O processor’s functionality.

The I/O primitives level provides a useful layer to insu-

late the drivers from the I/O processor. Hence, all the inter-
face card and peripheral drivers can be written in MODCAL
(HP’s internal Pascal-like systems programming language)
rather than being forced to use assembly language. This
encapsulation of the assembly language in the I/O primi-
tives reduces the time required to design, code, test, and
maintain the driver compared to programming in assembly
language. The reliablity of the drivers is greatly improved,
because it is easier to understand the code and its function
when the code is in a high-level language.
First-Level and Second-Level Drivers. The first-level and
second-level drivers are designed to hide the anomalies of
the peripherals and interface cards while providing all the
functions that each device provides (e.g., full access to the
instrumentation features of the HP-IB interface).
Nonspecific device features are relegated to higher levels
of the I/O hierarchy to prevent duplication of functions
that would increase the overall size of the I/O subsystem,
reduce performance, or possibly present inconsistent be-
havior for different drivers. In addition to encapsulating
the specific peripheral or interface card characteristics to
provide access to a generic device, the driver design pro-
vides access to rather dissimilar devices (e.g., discs and
HP-IB interface cards) with the same parameters for either
the first- or second-level driver procedures. This uniformity
provides the first step in supplying the user with a totally
device-independent /O interface.

The SUN operating system drivers also provide ex-
tremely resilient recovery from error conditions. They have
been through a thorough set of tests to ensure that the
drivers never leave the device they control or leave the
system in a bad state (requiring a power cycling of the
computer or device) as a result of any possible error condi-
tion. Extra effort was taken to provide a broad resolution
of error conditions reported to the system rather than com-
bining many different errors into generic error values. The
drivers also provide numerous different soft-error reports
to inform the user of nonerror related data such as the
occurrence of an automatic data record sparing (replace-
ment of a bad record with a good record) on a mass storage
medium or a case where the system had to retry an access
to a data record to obtain it without an error. This additional
resolution and the soft-error concept provide the user with

a more informed view of the operation of the system instead
of requiring a guess as to what is going wrong.

HP's earlier desktop computers have always provided
access to the hardware registers on the I/O cards to provide
customers with access to features not provided by the I/O
language of their system. However, the new-generation HP-
CIO cards are far more complex to program and in addition,
do not have conventional registers. Thus, the SUN drivers
provide a synthesized set of registers, called pseudoregis-
ters. This provides the user with the same model as on the
HP 9845 Computer for accessing features of an I/O card not
normally provided by the system, but done in cooperation
with the driver. Thus, the driver has the opportunity to
provide additional functions in an isolated manner. This
allows the same pseudoregisters to be used for different
implementations of the same type of interface card, which
increases the portability of user applications.

The SUN drivers support the broad set of peripherals
produced by Hewlett-Packard. Instead of initially supply-
ing a core set and then adding less-essential drivers at a
later time, SUN provides support for all peripherals that
make reasonable sense for the HP 9000 marketplace. One
additional driver that is somewhat unusual is the mem-
ory driver. This driver uses the main memory of the running
system to simulate a disc drive. The code required to pro-
vide this driver is a great deal simpler than if this function
were provided at a higher level. The result is that a user
can develop an application that accesses a disc file and
then decide to store the data in main memory to gain the
performance advantage of not having to spend the time to
access a disc drive. The change is trivial using the memory
driver; simply revise the reference to the specific mass
storage device to be the memory driver rather than the
original disc drive.

Acknowledgments

Gary Fritz did the initial implementation of the I/O primi-
tives, David Frydendall implemented the serial and 16-bit
parallel card drivers, Mark Hodapp tested the file system,
Dan Osecky assisted in the implementation of the I/O primi-
tives, and David Pinedo tested the HP-IB and nine-track
tape drivers and implemented the CIPER protocol printer
driver.

Reference

1. F.]J. Gross, W.S. Jaffe, and D.R. Weiss, “VLSI /O Processor for
a 32-Bit Computer System,” Hewlett-Packard Journal, Vol. 34,
no. 8, August 1983.

MARCH 1984 HEWLETT-PACKARD JOURNAL 41

© Copr. 1949-1998 Hewlett-Packard Co.

 —

Michael L. Kolesar

Mike Kolesar studied
physics at Villanova Univer-
sity (BS 1968) and nuclear
physics at Comnell Univer-
sity (MS1971). Hecame to
HPin 1974 withthree years
! of experience in designing
il high-speed data acquisi-
‘ tion systems for a synchro-
£ tronlaboratory. Now a sec-
tion manager respansible for graphics software
and HP-UX commands and languages, he contri-
buted to the architecture and microcode for the
Series 500 CPU chip and managed some of the
Series 500 software groups. He is coauthor of an
award-winning paper on the Series 500 CPU ar-
chitecture. Bornin Chicago, lllingis, he is married,
has three daughters, and now lives in Fort Collins,
Colorado. He enjoys downhill and cross-country
skiing, stereo music systems, photography, elec-
tronics, and hiking in the Rocky Mountains.

Michael V. Hetrick

Mike Hetrick began work at
HPin 1973 and contributed
to the production of the HP
9830 Computer and de-
velopment of the HP 9815
and HP 250 Computers. He
was project manager for
the data base management
and operating system paor-
‘\\!%1 tions of the HP 250, An R&D
sechon manager since 1979, he has been respon-
sible for the development of the high-speed HP
9845 Computer, the Model 530 and Mode!l 540
Computers of the Series 500, and most recently,
the first HP-UX products for the HP 8000 computer
family. Born in Milwaukee, Wisconsin, Mike studied
electrical engineering at General Motors Institute
(BSEE 1969) and the University of Colorado (MSEE
1970). He is married, has two sons and two
daughters, and lives in Loveland, Colorado. He en-
joys racquetball, softball, and camping. and plays
clarinet in the Loveland Municipal Band.

7

Jeff B. Lindberg

3 Joining HP in 1976 with a
 BSEE degree awarded by
. the University of Nebraska,
. Jeff Lindberg worked on

operating system design

. for the HP 250 Computer

~ and the HP 9000 Series 500
HP-UX product, for which
he is now project manager.
He received an MS degree
in computer science from Colorado State Univer-
sity in 1982. Jeff is married, has a son, and lives
in Fort Collins, Colorado. Qutside of work, he is a
vocal soloist and enjoys playing golf and basketball
and spending time with his family.

Scoft W.Y. Wang
Scott Wang studied electri-
cal engineering at the Mas-
sachusetts Institute of
Technology (SBEE 1871)
and the University of Michi-
= @ ! gan (MSEE 1972). With HP
1 since 1972, he has contrib-
aaa uted to a number of HP
products, including the HP
9805 Calculator, the HP-81
Computer, and the 16K NMOS ROM. He managed
the development of the HP 250 Computer's BASIC
operating system and OM250 Applications Pack,
He managed the HP-UX project and the soft-
ware tools for the Series 500 and now is responsible
for developing HP-UX for the Series 200 Comput-
ers. Scottis amember of the Computer Society of
the IEEE and lives in Fort Colling, Colorado. He is
married, has a daughter, and is interested in audio/
video, home computers, and photography.

15
Timothy W. Tillson
~_, T Asoftware development
= S engineer at HP's Fort Col-
lins Division, Tim Tillson
worked on the BASIC com-
piler and human interface
for the Series 500 Compul-
3 ers. Timis a member of the
DN ACM and holds an AB de-
,f_'-{_ { 1 gree in mathematics from
g < Brown University (1974)
and MS degrees inmathematics and computer sci-
ence from Chio State University (1976 and 1978,
respectively). His studies resulted in three research
papers related to combinatorial mathematics. Born
inHouston, Texas, he now lives in Fort Collins, Col-
orado. He is married (his wife is an English profes-
sor)and actively interested in running, swimming,
reading, software hacking, and the stock market.

Richard R. Rupp

S Dick Rupp joined HF in
. \ 1979 after receiving a BS
degree in computer sci-
ence from Michigan State
University. He was a soft-
X ware engineer working on
- 1l 1 theBASICirontendforthe
ot i é&% Series 500 Computers be-
‘ ~ fore leaving the company
recently. A native of Detroit,
Michigan, he is alngle and lives in Denver, Col-
orado. He likes playing volleyball, water skiing, and
working with stained glass.

Jack D. Cooley
c 2 A native of Mattoon, lllincis,
Jack Cooley attended the
nearby University of lllinois,
earning a BS degree in
physics in 1966.He served
four years in the U.S. Air
Force, attaining the rank of
captain, before continuing
his studies at the University
pa of Colorado. He received
an MS degree in compuler science in 1972 and
then joined HP. Jack has worked on a number of

BASIC language projects for various HP products,
including the HP 9835, HP 9845, and Series 500
Computers, the last as a project manager. He is
now a software engineering manager for product
assurance at HP's Fort Collins Division, He is mar-
ried, has two children, and lives in Fort Callins, Col-
orado. Outside of work, he plays folk guitar and en-
joys running, hiking, camping, bicycling, cross-
country skiing, and photography.

David M. Landers

Dave Landers grew up in
Indianapolis, Indiana, and
attended Purdue Univer-
sity, receiving a BSEE de-
greein 1973 and an MSEE
degree in 1974. He then
joined HP and has worked
on BASIC software for a
number of HPF computers—
the HP 9835, HF 9B45A,
and HP 9000 Series 500. He also contributed to the
1/O ROM for the HP 9835 and HP 9845 and to the
LAN 9000 software. Dave is single, lives in Fort Col-
lins, Colorade, and enjoys chess, hiking, cross-
country skiing, and playing softball and basketball

22

John J. Balza
Bomn in Green Bay, Wiscon-
sin, John Balza studied
; electrical engineering at
” ’ the lllinois Institute of Tech-
nology (BS 1971) and the
: . University of Wisconsin
(MS 1972). He then came
to HP and has done code
development, production
& engineering, hardware de-
velopment, and chip design for several HP com-
puter products, He managed the I/0 ROM project
for the HP 9835-and HP 9845 Compulers and
worked on terminal emulators, data communica-
tions, and LAN 9000 before taking up his current
assignment related to networking for personal
computers. John lives in Fort Collins, Colorado, is
married, and has two daughters. He enjoys playing
both the piano and the stock market.

James L. Willits

AnR&D project manager at
HPF's Colorado Networks
Operation, Jim Willits de-
veloped data communica-
tions products far the HP
3000, HP 250, and HP 9000
Computers. He received a
BS degree in mathematics
from Kansas State Univer-
sity in 1967 and then
served for four years as a computer systems de-
sign engineer in the U.S. Air Force, attaining the
rank of captain, belore resuming his studies atlowa
State University. After receiving an MS degree in
computer science in 1973, he joined HP. Jimwas
barn in Sedro Woolley, Washington, is married, has
ason and a daughter, and lives in Loveland, Col-
orado. He enjoys golf, racquetball, downhill skiing,
and sailing his Hobie Cat.

42 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

H. Michael Wenzel
Mike Wenzel holds the
BSEE (1969) and MSEE
(1971) degrees from the
University of Denver. His
first project after joining HP
in 1974 was developing
firnware for a raster printer
More recently, he worked
] on dala communications
‘:. and network sofiware, in-
ciuding design of the message manager and ar-
chitecture for LAN 9000. He currently is working on
new network archilecture for the Series 200 and
Series 500 Computers. Before coming to HP, he
served five years inthe U.S. Air Force as a conltract
officer for the space shuttle program. Mike was
born in Alton, lllinois, and now lives in Fort Callins;
Calorado. Married and the father of two daughters,
he is interested in music, hiking, stained glass, and
the use of computers in education (he advises a
local grade school regarding netwarking and com-
puter/sofiware availability to students).

24

Vincent C. Jones
Vince Jones joined HP in
1979. Now a project man-
ager, his group is responsi-
ble for IBM and asynchran-
ous connections to the HP
8000 Computers. Before
coming to HP, he specified
computer network access
and remote sensing sys-
p— tems forthe U.S. Air Force
and was an occasional consultant to small busi-
ness computer users. A graduate of Rutgers Uni-
versity (BA and BSEE, 1970), he continued his
studies in electrical engineering at the University
of llinois for the MS (1972) and PhD (1975) de-
grees. He lives in Fort Collins, Colorado, with his
wite and three daughters and “enjoys family lifein
the shadows of the Rockies."

Ay

]

28

Stephen D. Scheid

-t

Bornin Bryan, Texas, Steve
Schied was raised in
Phoenix, Arizona, where he
attended nearby Arizona
State University and re-
ceived a BS degree in en-
{ gineering science in 1975
V ' and an MSE degrag in elec-
: ‘ trical engineering in 1978
a He then joined HP and
worked on QUERY/45—a data base inquiry pro-
gram, enhanced microcode forthe HP 9845 Com-
puter, and most recently, the virtual memory portion
of the Series 500 operating system. Outside of
work, Steve is a volunteer instructor and trip leader
lor the Boulder Mounitaineering Schoal. He is mar-
ned to another HP engineer, lives In Fort Collins,
Colorado, and has a variety of pets—amaong them
Amazon parrots, which he breeds, An aclive out-
doarsman, he enjoys rock climbing, mountaineer-
Ing, cross-country and downhill skiing, snowshoe-
ing, and backpacking—last year he backpacked
more than 50 miles across Big Bend National Park
from east to wesl.

Dennis D. Georg
Born in Algona, lowa
Denny Georg studied at
lowa State University, re-
ceiving a BS degree in
mathematics in 1971 and
the MS and PhD degrees in
computer science in 1973
and 1875. After teaching
computer science for three
by years, he joined HPin 1978
He worked on HP 9000 software and managed the
SUN operating system kemel project before as-
suming his cumment responsibility as an R&D section
manager. His work on the HP 9000 memory system
has resulted in two patent applications. A member
of the IEEE, the ACM, and the Planning and Zoning
Board of Fort Collins, Denny is married and lives
in Fort Collins, Colorado. He enjoys fishing, hiking,
amateur radio, skiing, and technical reading

Benjamin D. Osecky

Dan Osecky is project man-
ager for HP 8000 operating
system software. Earlier, he
contributed to the operat-
ing system for the HP 9835
Computer. He is coauthor
of a paper on a self-con-
figuring computer network
and coinventor for a patent
application related to mem-
ory management for the HP 9000 Computers. Dan
recelved BSEE (1972) and MSEE (1974) degrees
trormn Virginia Polytechnic Institute and State Univer-
sity, before joining HP in 1976. He was born in
Washington, D.C., and is 2 member of the ACM.
Married to another HP engineer, he lives in Fort Col-
lins, Colorado, and is interested in amateur radio,
science fiction, hiking, and cross-country skiing.

34
Robert J. Bury

A native of Chicago, lllincis,
Bob Bury studied computer
science at the University of
Ilinois (BS 1979). He joined
HPin 1980 and helped de-
velop the SUN operating
system for the Series 500
Computers. A member of
‘v,, o B A the IEEE, he is married

Lty S ives in-Fort Collins, Col-
orado, and enjoys gardening, photegraphy, and
cross-country skiing

as

Charles E. Mear, Jr.

Charlie Mear studied com-
puter science at Colorado
State University (BS 1977)
and the University of Texas
{MS 1979) before joining
HP. He worked on the file
syster for the Series 500
Computers and currently is
working on the HP-UX ker-

: nel for the Series 200 Com-
puters. Born in Midland, Texas, he naw lives in Fort
Collins, Colorado, is single, and is interested in
boardsailing, skiing, and golf

Marcel Meier joined HP in
8 1979 after receiving a BS
degree in computer en-
gineering from Case West-
em Reserve University. He
worked on the operating
sysiems for the Sernies 500
Computers before begin-
ning his current work on
HP-UX for the Series 200
Computers. He is amember ofthe ACM. A citizen
of both the U.S.A. and Switzerland. Marce! was
bornin Manitou Springs, Colorado, and now lives
in Fort Collins, Colorado. An avid bicyclist, he en-
joys touring and pedals to work year-round. Heis
also interested in skiing, hiking, sports cars, and
audio systems

Robert M. Lenk
'|’ Bob Lenk's contributions
have resulted in two papers
related to a system for soft-
ware performance in-
strumentation. Joining HP
in 1981, he worked on the
IO primitives and local
area network services faor
the Series 500. Now he is
Ve . working onthe HP-UX ker-
nel for the Series 200 Computers. A member of the
ACM, he holds a BA degree in mathematics (1975)
andanMS degree in computer science (1981) from
the University of Connecticut. Born in New York,
MNew York, he now lives in Fort Collins, Colorado.
Heis married and |ikes square dancing and cross-
country skiing.

44

Donald L. Hammond

Don Hammond was re-
cently named director of
Hewlett-Packard
Laboratories, Bristol, Eng-
land. He joined HP in 1959
as manager of the quartz
crystal department, and in
1963, he became manager
of physical research and
development. From 1966 to
1979, he was director of the Physical Electronics
Laboratory of Hewlett-Packard Laboratories, and
from 1879 until His move to England, he was direc-
tor of the Physical Research Center of HP
Laboratories, with responsibility for R&D in medical
and analytical instruments, computer peripherals,
factory automation, and lithography. He is a
member of the American Physical Society, a fellow
ofthe |EEE, and a member of the National Academy
of Sciences evaluation committee for the U.S. Na-
tional Bureau of Standards and the U.S. Naval
Observatory. He holds BS, MS and DSc degrees
in physics from Colorado State University. A native
of Kansas City, Missour, Don is married ‘and has
five children. He served for ten years on the board
of trustees of the Palo Alto, California Unified
School District, and has been a member of vanous
presidential, gubernatorial, and industry com-
mittees on education and lechnology.

© Copr. 1949-1998 Hewlett-Packard Co.

MARCH 1984 HEWLETT-PACKARD JOURNAL 43

Viewpoints

Coping with Prior Invention

by Donald L. Hammond

printer, the ThinkJet (HP 2225), which offers what we be-

lieve is an unprecedented combination of features: 150
character-per-second printing speed, archival print on ordinary
paper, small size, quiet operation, and low cost—both initial cost
and total cost of ownership. Power requirements are so low that
one model is available with a battery pack that provides more
than three hours of printing, or about 200 pages. These advantages
have been made possible by a new ink jet printing technology,
which we have called thermal ink jet, or more picturesquely,
“Think]et,” to differentiate it clearly from the more common kind
of thermal printing, which requires special paper.

We think the story of this technology development is an interest-
ing example of what can happen in today's fast-moving technolog-
ical environment. In our HP Laboratories at Palo Alto, in the fall
of 1978, John Vaught was looking for a new printing method that
would have the advantage of inherent simplicity compared with
the rather complex electrophotographic process used in the HP
2680A Laser Printer, for which John had designed the optical
scanning package.

He started with the idea of turning ink into vapor by high-speed
electrolysis and heating, using pressure to eject drops. When this
was found to work but with serious failure rates, he conceived
the idea of using a small resistor, which when heated for a few
microseconds by a current pulse, created bubbles, thereby ejecting
drops of ink from a nozzle. This was first demonstrated in March
1979.

We proceeded to develop this idea, amidst some skepticism that
the necessary performance and reliability could ever be achieved.
The Think]et printer is testimony that these concerns were dis-
persed by extensive development work in several HP organizations
on the process and structure. One of the key concepts, originated
at HP's Corvallis Division, was a totally disposable ink jet head

T HIS MONTH, HEWLETT-PACKARD is introducing a new

with a self-contained ink supply.

1t is not uncommon, when an important problem such as quality
printing receives the attention of many people, that independent
conception occurs in isolated research centers. Such was the case
with ThinkJet. In September 1981 we learned of the existence of
the same concept under development at Canon, Inc., in Japan.
Ichiro Endo had conceived the idea independently, with an earlier
invention date. Canon referred to the technology as “Bubblejet.”

Since we in HP were convinced that this new technology had
great promise, the arrival of a new player in this arena caused
some concern as to our respective technical positions. There were
a number of options but the most attractive for HP was to work
with Canon. Excellent ties between the two companies had already
been established as a result of our acquisition from them of tech-
nology for electrophotographic printers several years earlier.

Hewlett-Packard and Canon have agreed to cooperate in the
technology development. Because this process started in 1983, the
sharing of technical data has had no major impact on our first
product release, but we can feel the positive effect that it is having
on our continuing developments. Canon has reflected to us similar
feelings. Working with a group that represents a combination of
cooperation and competition has provided a valuable perspective,
especially increased objectivity, for the technical and management
teams of both companies.

This experience has reinforced the principle that technology
alone can rarely make a significant contribution in this complex,
fast-moving world. There are equally valuable elements, some-
times involving the resolution of relationships in the spirit of
international competition and cooperation, that can have dramatic
effects on our ability to bring that technology to the market.

We will be reporting in a future issue on more details of these
developments, including the ThinkJet printer.

HEWLETT-PACKARD JOURNAL

Bulk Rate

U.S. Postage
Paid
Hewlett-Packard

00
670TEEEBLACECA
82007 BLACKBURN
JOHN HOPKINS WNIV o
APPLIED PHYSICS

HOPKINS RD . 55907

CHANGEOF ADDRESS: ==

5853-8521

ailing list please sand u

e, Palo Alto, Calitornia

© Copr. 1949-1998 Hewlett-Packard Co.

	A New 32-Bit VLSI Computer Family: Part II - Software
	Contrasting Project Management
	The Development of a BASIC Language Subsystem
	HP-UX: Implementation of UNIX on the HP 9000 Series 500 Computer Systems
	HP-UX: A Corporate Strategy
	An Interactive Run-Time Complier for Enhanced BASIC Language Performance
	Preserving Programming Investment
	A Local Area Network for the HP 9000 Series 500 Computers
	Data Communications for a 32-Bit Computer Workstation
	A General-Purpose Operating System Kernel for a 32-Bit Computer System
	Parallel Development of Hardware and Software
	A System Software Debugger
	The Design of a General-Purpose Multiple-Processor System
	An I/O Subsystem for a 32-Bit Computer Operating System
	Viewpoints: Coping with Prior Invention

