
H E W L E T T - P A C K A R D
n r

CD
M A R C H 1 9 B 4

© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D J O U R N A L
Technical Informat ion f rom the Laborator ies of Hewlet t -Packard Company

MARCH 1984 Volume 35 â€¢ Number 3
C o n t e n t s :

A New V . VLSI Compute r Fami l y : Par t I I â€ ” So f tware , by M ichae l V . He t r i ck and M ichae l
L Kolesar Sophist icated sof tware had to be developed to take fu l l advantage of the features

of fered by HP's new VLSI computer ch ip set .
H P - U X : S c o t t o f U N I X o n t h e H P 9 0 0 0 S e r i e s 5 0 0 C o m p u t e r S y s t e m , b y S c o t t
W. Y. user and Jef f B. L indberg Th is enhanced vers ion o f UNIX le ts a user "por t " sof tware

f rom one HP 9000 Computer to another and use sof tware deve loped on o ther systems.
An In te rac t i ve Run-T ime Compi le r fo r Enhanced BASIC Language Per fo rmance , by
David M. Landers, T imothy W. Wi lson, Jack D. Cooley, and Richard R. Rupp This technique

adds f r iend ly language per formance whi le re ta in ing BASIC'S f r iend ly in terac t ive features .
A L o c a l H . N e t w o r k f o r t h e H P 9 0 0 0 S e r i e s 5 0 0 C o m p u t e r s , b y J o h n J . B a l z a , H .
M ichae l Wenze l , and James L Wi l l i t s LAN 9000 a l lows c lus te r ing o f HP 's la tes t computer

worksta t ions for computer -a ided des ign and shar ing o f data and resources.
D a t a V i n c e n t f o r a 3 2 - B i t C o m p u t e r W o r k s t a t i o n , b y V i n c e n t C . J o n e s B y
emulat ing asynchronous termina ls , the Model 520 can exchange data wi th o ther systems.
A General-Purpose Operat ing System Kernel for a 32-Bit Computer System, by Dennis
D . G e o r g , B e n j a m i n D . O s e c k y , a n d S t e p h e n D . S c h e i d T h i s k e r n e l p r o v i d e s a c l e a n

in ter face between an under ly ing sophis t icated hardware system and h igh- leve l user systems.
The Des ign o f a Gene ra l -Pu rpose Mu l t i p l e -P rocesso r Sys tem, by Ben jam in D . Osecky ,
Dennis processors Georg, and Robert J. Bury To coordinate the operation of symmetric processors

requi res some specia l hardware character is t ics and hardware/sof tware t radeof fs .
An I /O Subsys tem fo r a 32 -B i t Compute r Opera t ing Sys tem, by Rober t M. Lenk , Char les
E. Mear , J r . , and Marce l E. Meier Th is subsystem for Ser ies 500 Computers has two main

components â€” a f i le system and a set of device drivers.

Authors

Viewpo in ts â€” Cop ing w i th Pr io r Invent ion , by Dona ld L Hammond What do you do when
you f ind out that someone e lse invented your new technology f i rs t?

In this Issue:
The solar system on th is month 's cover represents the system sof tware for the HP 9000

Ser ies issue, Computers . We f i rs t to ld you about the HP 9000 in our August 1983 issue,
which possible. devoted to the advanced technology that makes the Series 500 possible. You
may recall reading about the HP 9000's five VLSI (very large-scale integration) chips â€” among
them by 32-bit, 450,000-transistor central processor chip â€” made by a high-tech integrated
c i rcu i t process ca l led NMOS I I I . To help manage the heat generated by a l l those densely
packed circuits, a new kind of circuit board, called a f instrate, was developed. The f instrates
in each holds 9000 Series 500 Computer are contained in a lunchpail-sized module that holds

up to three centra l processors. These technologica l developments make i t possib le to put on an engineer 's
desk a computer that has more power than some mainframe computers â€” "mainframe" being the name applied
only to the largest computers. The HP 9000 Model 520 is the desktop mainf rame. Models 530 and 540 are,
respect ively, rack-mount and cabinet vers ions designed to serve mul t ip le users.

Al though great lunchpai l -s ized module is the beginning, between i t and that desktop mainframe is a great
d e a l o f t h e i n b o t h h a r d w a r e a n d s o f t w a r e . T h i s m o n t h ' s i s s u e c o v e r s t h e s y s t e m s o f t w a r e d e v e l o p
ment. we'l l articles we'l l cover the hardware development, and in future Issues, we'l l carry articles on significant
appl icat ions software packages. In this issue you can read about operat ing systems, languages, input/output,
networking, and mult iprocessor management. An unusual aspect of the HP 9000 Ser ies 500 is that there are
two leve ls o f operat ing system. What the user sees is e i ther an advanced vers ion of the HP BASIC system
or an HP vers ion of Bel l Laborator ies ' UNIX operat ing system. Under ly ing those systems is the Ser ies 500's
SUN operating system, whose name gave us the idea for our cover photo. The SUN concept proved invaluable
in the development of the two user operat ing systems.

-R. P. Do/an

E d i t o r , R i c h a r d P . D o i a n Â « A s s o c i a t e E d i t o r , K e n n e t h A . S h a w Â » A r t D i r e c t o r , P h o t o g r a p h e r , A r v i d A . D a n i e l s o n â € ¢ I l l u s t r a t o r s , N a n c y S . V a n d e r b l o o m ,
Susan E. European â€¢ Administrative Services, Typography, Anne S. LoPresti, Susan E. Wright â€¢ European Production Supervisor, Henk Van Lammeren

2 H E W L E T T - P A C K A R D J O U R N A L M A R C H 1 9 8 4 Â © H e w l e t t - P a c k a r d C o m p a n y 1 9 8 4 P r i n t e d i n U . S . A .

© Copr. 1949-1998 Hewlett-Packard Co.

A New 32-Bi t VLSI Computer Fami ly
Part IIâ€” Software
Based on HP's proprietary 32-bit VLSI NMOS-III technology,
the HP 9000 Ser ies 500 Computers use local area
networking and HP-UX, HP's enhanced version of UNIXâ„¢
An advanced version of BASIC that uses run-time compil ing
is avai lable on the Model 520 integrated workstat ion.

by Michael V. Hetr ick and Michael L. Kolesar

IN 1981 HEWLETT-PACKARD described the develop
ment of a single-chip 32-bit processor1 fabricated with
a new VLSI process technology called NMOS III.2 This

new technology was also used to develop four other 32-bit
chips that, coupled with the design of a special copper-
cored circuit board called a finstrate, enable a powerful
multiprocessor 32-bit computer system to be packaged
within a module no larger than a loaf of bread. The design
of the five chips, the module, and the finstrate, and the
NMOS-III process were discussed in last August's issue.

The compact module, called the Memory /Processor Mod
ule, forms the heart of a desktop engineering computer
workstation, the HP 9000 Computer, introduced by HP in
1983. Now known as the HP 9000 Model 520, it contains
a SVi-inch flexible disc drive, has four I/O slots, and has a
choice of either a color or monochromatic 13-inch CRT
display. Depending on the choice of the twelve finstrates
possible in the Memory/Processor Module, up to three
CPUs, three I/O processors, or 2.5M bytes of RAM can be
installed. Available options include an internal thermal
printer and an internal 10M-byte hard disc memory.

A sophisticated internal operating system, called SUN,
was developed to coordinate this compact multiprocessor

computer system. A high-performance interactive high-
level language system is required to allow a user to take
full advantage of the features included in the Model 520.
An enhanced version of BASIC and a run-time compiling
technique were developed. This version was designed as
a superset of the BASIC used on earlier HP desktop comput
ers so that users could easily port existing software to the
Model 520.

In late 1983, the HP 9000 family of computers was de
fined to include some earlier 16-bit technical desktop com
puters,3 now known as the Series 200, and alternative pack
ages for the Memory/Processor Module, which with the
Model 520, form the Series 500. To simplify the porting of
software developed by other companies to the HP 9000
family, HP-UX, an enhanced version of UNIXâ„¢, was de
veloped. LAN 9000 was developed to provide local area
networking.

Fig. 1 depicts all current HP 9000 models. The primary
distinction between the Series 200 and Series 500 Comput
ers is in their microprocessor, or central processing unit
(CPU), and the ensuing system design. All Series 200 mod
els are based on Motorola's 16/32-bit 68000 microprocessor,
while all Series 500 models use HP's proprietary 32-bit
UNIX is a U.S. t rademark of Bel l Laborator ies.

HP 9000 Computers
^^^m

Series 200
â€¢ MC 68000 Microprocessor
â€¢ 16/32-Bit Architecture

Series 500
â€¢ HP's NMOS-III VLSI Chip Set
â€¢ 32-Bit Architecture

Model 540
(H P 9 0 4 0)

Model 530
(H P 9 0 3 0)

F i g . 1 . T h e H P 9 0 0 0 f a m i l y o f
c o m p u t e r s i n c l u d e s t h e S e r i e s
2 0 0 a n d t h e S e r i e s 5 0 0 C o m p u t
e rs . The Ser ies 200 i s based on
t h e 1 6 / 3 2 - b i t 6 8 0 0 0 m i c r o p r o
c e s s o r a n d t h e S e r i e s 5 0 0 i s
based on HP 's p ropr ie ta ry 32-b i t
VLSI NMOS-III chip set. The Series
200 is lower in cost and the Series
500 has h igher per formance. Pro
grams developed in BASIC on the
Se r i es 200 can be po r ted t o t he
Mode l 520 o f t he Se r i es 500 f o r
decreased computa t ion t ime and
other per formance advantages.

MARCH 1984 HEWLETT-PACKARD JOURNAL 3

© Copr. 1949-1998 Hewlett-Packard Co.

Contrasting Project Management
The re l a t i ve magn i t udes o f t he BAS IC and HP-UX p ro j ec t s

c reated in terest ing and cont ras t ing sof tware management tech
n iques . BASIC, be ing re la t i ve l y sma l l i n code s i ze by today ' s
s tandards (less than one megabyte) was imp lemented en t i re ly
wi th in HP's Fort Col l ins Systems Div is ion (FSD). A development
env i ronment known as MODCAL, wh ich ran on p rev ious-gener
at ion desktop computers, was an ef fect ive tool for code develop
m e n t . S i n c e t h e p r o j e c t w a s e x e c u t e d b y a f e w e n g i n e e r i n g
groups in one department , coordinat ion among the design team
was extremely eff ic ient.

HP-UX deve lopment , on the o ther hand, was much la rger in
scope; it resulted in approximately 1 0 megabytes of system code.
Features such as mult ip le languages, graphics, networking, and
fundamenta l p rogram deve lopment too ls were requ i red . HP en
t i t ies outs ide of FSD had the exper t ise to cont r ibute in some of
these key areas. Thus, two Cal i fornia organizat ions â€” the Com
puter Language Labora to ry (CLL) and the Eng ineer ing Produc
t ivi ty Division (EPD) â€” along with the Colorado Networks Opera
t ion (CNO) prov ided FSD wi th major sof tware subsystems. CLL
produced the FORTRAN and Pascal compi lers , EPD developed
HP's wel l -known two- and three-d imensional graphics l ibrar ies,
and CNO p rov i ded mos t o f t he da ta commun i ca t i ons and ne t
working software.

FSD por ted the UNIX'" commands and created the System I I I
U N I X F S D t o t h e e x i s t i n g S e r i e s 5 0 0 o p e r a t i n g s y s t e m . F S D
was also responsible for coordinating the entire software develop
ment and integrat ing al l subsystems into a cohesive product.

A s t h e H P - U X a s y n c h r o n o u s c o m m u n i c a t i o n s s o f t w a r e b e
came funct ional , i t was used to t ransmi t messages and in ternal
so f tware updates between d iv is ions. FSD and CNO capi ta l ized
on h igh-speed loca l a rea ne twork p ro to type hardware and so f t
ware to update local systems e lect ronica l ly .

Thus, many HP-UX sof tware subsystems became key develop
ment tools even as they were being created. (The UNIX command
set , C, FORTRAN, and Pascal compi lers, and SCCS, the source
code cont ro l sys tem, are add i t iona l examples .) The i r everyday
use no t on l y con t r i bu ted to ou r deve lopmen t p roduc t i v i t y , bu t
a lso served as a pr ime example of how internal use of what wi l l
become a p roduc t imp roves the p roduc t ' s ove ra l l qua l i t y i n a
way that is not otherwise possib le.
'UNIX is a U.S. t rademark of Bel l Laborator ies

-Michael V. Het r ick
-M i chae l L Ko lesa r

CPU chip set mentioned earlier. Highly compatible system
software spans the lower-cost Series 200 and higher-perfor
mance Series 500 workstations to provide a broad price/per
formance product family. BASIC is offered on all but the
Model 530 and Model 540; HP-UX is offered on all but the
Model 216 and Model 226. A standard HP Pascal develop
ment environment also appears on all Series 200 models.

This issue discusses the development of the Series 500
software systems with the exception of the multitasking,
graphics, and I/O subsystems for Model 520 BASIC. They
will be discussed with the hardware design of the Series
500 in the May issue, which will conclude the story of the
development of the HP 9000 Series 500 Computers.

Software Organizat ion
The software for the Series 500 is modular and is easily

decomposed into smaller building blocks. The design kept

the internal SUN operating system clearly distinct from
the code for the BASIC language. This separation was
necessary to provide the foundation for a true multilingual
system. For example, we knew that the Series 500 with
virtual memory would be an excellent FORTRAN engine.

The separation or layering of the software made it neces
sary to define a powerful and flexible set of operating sys
tem entry points to support the real-time event-driven
BASIC language needs. This set of underpinnings also
serves as the basis for the HP-UX system.

The SUN operating system hides most of the hardware
details from the higher-level subsystems. The initial ver
sion of SUN supports the Model 520's demanding 700-
keyword BASIC language with its new run-time compiler.
The support for multiple CPUs and I/O processors was
designed in from the beginning. The BASIC language sys
tem supports memory-resident programs and data, but does
not support virtual memory. Besides the BASIC language
mainframe code, several option packages extend its capa
bilities by adding two- and three-dimensional color
graphics, HP's IMAGE data base management and query
system, extended I/O, extended mass storage with multiple
disc formats, multitasking, advanced programming such as
matrix manipulations, and I/O drivers for a variety of inter
faces and devices. BASIC'S highly integrated human inter
face causes it to be provided only on the Model 520, the
integrated desktop version of the Series 500. Special
hardware in the Model 520's display unit is used to achieve
excellent performance for BASIC'S text and graphics win
dow facilities. The Model 520 keyboard contains special
control keys used in BASIC, such as RUN, STOP, STEP, and
PAUSE, in addition to the keys normally found on a terminal
keyboard.

We chose UNIX as the best available environment to
support FORTRAN and other standard languages. A second
version of the SUN operating system was built using the
modules from the first version, but with the important virtual
memory feature added. The diagrams in Fig. 2 and Fig. 3
show the similarity of the BASIC and HP-UX systems. This
leverage paid off handsomely, because almost from the
beginning, the terminals, discs and printers worked reliably

B A S I C U s e r P r o g r a m s

H P 9 8 3 5 / 4 5
B A S I C

S e r i e s 2 0 0
B A S I C

B A S I C L a n g u a g e S u b s y s t e m

M u l t i - I M A G E
R u n - T i m e T a s k i n g D a t a
C o m p i l e r a n d B a s e

E v e n t s M a n a g e m e n t

Rea l -
T i m e 2 - D a n d 3 - D
E v e n t G r a p h i c s

I /O

S U N O p e r a t i n g S y s t e m
V e r s i o n I (n o v i r t u a l m e m o r y)

M u l t i - D y n a m i c D y n a m i c
C P U P r o c e s s M e m o r y

S u p p o r t M a n a g e m e n t M a n a g e m e n t

S D F / L I F / 4 5
F o r m a t

Fi le
S y s t e m

3 2 - B i t V L S I H a r d w a r e S y s t e m

D M A C h a n n e l s

C I O I n t e r f a c e C a r d s

1 6 - B i t H P - I B R S - 2 3 2 - C R J E

Fig. 2 . B lock d iagram of the BASIC language system for the
HP 9000 Model 520 Computer .

4 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

for HP-UX. Also, the real-time and multiprocessor design
carried over to HP-UX to give it a more solid basis for
performance extensions, device I/O, and real-time than
could be achieved with a ported system.

A thin layer of code maps the HP-UX intrinsic calls into
the underlying SUN intrinsics. The same HP Structured
Directory Format (SDF) hierarchical file system used by
BASIC is also used by HP-UX. It is almost indistinguishable
from the System HI UNIX file system except that it is more
reliable and less susceptible to corruption from power fail
ures and system crashes. This layered design was a concern
because it could lead to deviations from the UNIX seman
tics defined by Bell Laboratories. Therefore, a set of exten
sive and comprehensive kernel test programs was devised to
determine if any detectable differences had been introduced.
With only a small additional effort, the layered kernel
passed the validation tests. The same set of test programs
is being used to verify the Series 200 HP-UX kernel and
future releases of the Series 500 kernel.

The commands and libraries offered are selected from
both the Bell Laboratories and the University of California
at Berkeley versions of UNIX. Those most needed for pro
gram transport and development are included. The three
user program languages offered are C, Pascal, and FORTRAN
77. The calling sequences allow mixing of languages at the
subroutine level and the sharing of all library routines.

The definition of HP-UX includes not just compatibility
with Bell Laboratories' UNIX System III, but also HP exten
sions. The current system offers IMAGE data base manage
ment, AGP/DGL graphics, and local area networking based
on ARPANET TCP/IP and Ethernet protocols with both file

H P - U X U s e r P r o g r a m s

F O R T H A N T 7 1 H P P a s c a l I C I S h e l l

H P - U X S u b s y s t e m

H u H W n g u a l L i b r a r i e s

H P - U X

S U N

2 - 0 a n d 3 - D
G r a p h i c s
A G L D G L

H P - U X (B e l l S y s t e m I I I) I n t r i n s i c S e m a n t i c L a y e r

S U N O p e r a t i n g S y s t e m
V e r s i o n I) (p a g e d a n d s e g m e n t e d v i r t u a l m e m o r y)

M u l t i - D y n a m i c D y n a m i c S D F
C P U P r o c e s s F o r m a t

S u p p o r t M a n a g e m e n t M e m o r y F i l e M
M a n a g e m e n t S y s t e m

3 2 - B K V L S I H a r d w a r e S y s t e m

D y n a m i c
B u f t e r

M a n a g e m e n t

C I O I n t e r l a c e C a r d s

Fig. 3. Block diagram of the HP-UX operat ing system for the
HP 9000 Ser ies 500 Computers.

and process services.

References
1. J. Beyers, et al, "A 32b VLSI Chip," Digest of Technical Papers,
1981 THAM International Solid-State Circuits Conference, THAM
9.1.
2 . J . o f e t a l , "An NMOS VLSI P roces s fo r Fab r i ca t i on o f
a 32b CPU Chip," ibid, THAM 9.2.
3. HevvJett-Packard JournaJ, Vol. 33, no. 5, May 1982.

The Development of a BASIC Language Subsystem
The deve lopment o f the BASIC language subsys tem fo r the

HP 9000 Model 520 Computer had one pr imary goal â€” to al low
th i s new works ta t ion to be a comp le te func t iona l rep lacement
f o r t he HP 9835 and HP 9845 Compu te rs1 wh i l e ach iev ing a t
leas t ten t imes the per fo rmance o f the HP 9845 by us ing HP's
new 32 -b i t NMOS- I I I cus tom VLSI ch ip se t .2 In add i t i on , new
fea tu res were needed to keep pace w i th the new app l i ca t ions
t ha t such a capab le mach ine wou ld encompass . The deve lop
ment para l fo r th is top-o f - the- l ine BASIC mach ine ran in para l
le l wi th the chip set development.

The design team decomposed these high-level goals into many
c h a l l e n g i n g t e c h n i c a l g o a l s , u p p e r m o s t b e i n g t o p r o v i d e a
growth path for HP's current BASIC language customers through
a h igh degree of compat ib i l i ty , and to add new funct ions su i ted
t o t he powe r o f t he new ha rdwa re . The BAS IC l anguage was
uni f ied and extended in cooperat ion with the Series 200 Comput
e rs3 language team wh i le re ta in ing a h igh degree o f p rog ram
compat ib i l i t y w i th the ear l ie r HP 9835 and HP 9845. Thus, p ro
grams f rom ei ther generat ion of machines move easi ly onto the
Mode l 520 . A lmos t no d i f fe rences a re no tab le be tween Ser ies
200 BASIC and Mode l 520 BASIC. Even though most HP 9845
statements are retained, the uni formity of the evolv ing language
dictated that some differences would result. An optional translator
for HP 9845 programs to achieve a more precise semantic match
is available.

The major techn ica l cont r ibu t ion to suppor t the per formance
g o a l s w a s a r u n - t i m e c o m p i l e r f o r t h e B A S I C l a n g u a g e . T h i s
c o m p i l e r a p p e a r s t o t h e p r o g r a m m e r t o b e t h e s a m e a s o u r

t radi t ional interpret ive environment, preserving such features as
tracing, l ine stepping, execution of statements from the keyboard
and man ipu la t ion o f a runn ing p rog ram's va r iab les . A runn ing
p rog ram can be paused , l i nes can be added , de le ted , o r mod
i f ied, and execut ion then cont inued from i ts point of suspension.
A l l o f these features are s t i l l suppor ted even though the user 's
p rogram is no t in te rp re ted , bu t comp i led in to ob jec t code and
direct ly executed.

The result ing high-product iv i ty programming environment uses
execut ion modes and t rap inst ruct ions bui l t in to the new proces
sor . Para l le l ch ip se t and so f tware deve lopment a l lowed many
specia l ized instruct ions to be added to the processor in support
of these interactive features as well as the language itself. These
inc luded some of the t raps, the s t r ing manipu lat ion set , and b i t
man ipu la t ion . The resu l t i ng BASIC language sys tem has over
700 keywo rds t ha t encompass s i gn i f i can t da ta base manage
ment , graphics and I /O capabi l i t ies.

The new compi led env i ronment re ta ins the event -dr iven, rea l
t ime p rog ram con t ro l o f t he HP 9845 and HP 9000 Mode l 226
C o m p u t e r s . P r o g r a m b r a n c h i n g a n d f l o w a r e t i e d t o b o t h
hardware and software events through the use of ON statements.
These s tatements def ine the asynchronous branching that is to
occur when se lec ted events happens.

Also in support of the performance objectives, the new machine
uses stan emerging IEEE binary f loat ing-point mathematics stan
dard instead of the t radi t ional decimal mathemat ics. In addi t ion
to making use of the fast microcoded f loat ing-point on the micro
p rocesso r , b i na ry ma thema t i cs i s used i n new a lgo r i t hms f o r

MARCH 1984 HEWLETT-PACKARD JOURNAL 5

© Copr. 1949-1998 Hewlett-Packard Co.

comput ing t ranscenden ta l and o the r func t ions wh ich a re bo th
faster and more accurate.

Mu l t i task ing was added to improve the user ' s access to the
machine and to use the improved processor power. Simultaneous
program execut ion and deve lopment are now suppor ted . Up to
60 user processes can be run s imul taneously . These processes
share the system resources and peripherals. For communciat ions
and synchronizat ion they have "named-event" s ignal ing. Memory
res iden t vo lumes and f i l es we re added fo r r ap id sha red -da ta
access . F i le lock ing a l lows fo r a tomic (ind iv is ib le) update o f a
shared fi le.

The system archi tecture provides for mul t ip le ident ical CPUs.
Th i s t ha t was i nco rpo ra ted i n t o t he ope ra t i ng sys tem so t ha t
t h e p o w e r o f m a n y p r o c e s s o r s c o u l d b e d i r e c t e d a t r u n a b l e
tasks. The fundamental design supports these mult ip le CPUs as
homogeneous and anonymous comput ing resources . S ince a l l
C P U s h a v e s y m m e t r i c a c c e s s t o a l l I / O , t h e r e i s n o n e e d t o
introduce master-s lave relat ionships. The only external ly v is ib le
e f fec t o f add ing more CPUs is increased throughput .

Ful l -screen edi t ing and mul t ip le user-def ined windows in both
graph ics and a lpha d isp lays were added to improve the human
interface. Both publ ic and pr ivate windows are supported, includ
i ng a rb i t ra ry w indow ove r lap and las t upda te p r i o r i t y d i sp lay .
These windows act much l ike sheets of paper on your desk, wi th
the topmost sheets occ luding the sheets below where they over
lap. The window structure is dynamic â€” even the system message
areas can be re located anywhere on the screen.

An examp le o f new ha rdware capab i l i t y t ha t mapped i n to a
new set of language features is the internal, nonvolati le, real-t ime
c lock, which fac i l i ta tes us ing t ime to schedule program events .
The new f i le sys tem a lso uses the c lock to t ime-s tamp f i les as
they are c reated or changed and the l i s te r da tes hard copy.

The graphics def ini t ion was extended to support mult ip le input
devices wi th t racking and event capture, and the t ransformat ion
p i p e l i n e i n c l u d e s b o t h t w o - a n d t h r e e - d i m e n s i o n a l m o d e l i n g
modes.

Development Tools
A very accura te emula t ion p rogram tha t mimicked the execu

t ion of the new machine's instruction set was written for execution
on the distr ibuted HP 9845 workstat ions. This software emulat ion
was so accurate that i t took on ly ten minutes f rom the t ime the
f i rst chip set was del ivered to the software team unt i l the system
was up and runn ing a BASIC program in compi led code on the
new Model 520 hardware.

The ins t ruc t ion se t4 o f the new VLSI CPU ch ip p rov ided the
hooks for a h igh ly in teract ive symbol ic debugging too l . Th is de
bugger p rov ided a s imp le t rans i t ion be tween runn ing and s tep
p ing of systems programs. Procedure, l ine, and assembly leve l
s tepping are se lected on the f ly . Program f low is d isp layed sym
bo l i ca l l y a t the appropr ia te leve l . Var iab les can be re fe renced
symbol ical ly.

Pasca l was chosen as t he sys tems p rog ramming l anguage
w i t h l a rge f o r sepa ra te modu la r comp i l a t i on t o suppo r t l a rge
team program development . Th is new language is ca l led MOD-
CAL fo r MODu la r PasCAL. MODCAL i s ve ry s im i l a r t o Wi r th ' s
Modu la I I , bu t was des igned independent ly by HP. For the pro
gramming environment, the UCSD (University of California at San
Diego) p system was selected because i t was wr i t ten in Pascal ,
was easi ly ported to the HP 9845, and had the other tools, such
as edi tors, that were needed.

Ano the r impo r tan t dec i s i on was t o sepa ra te t he BASIC l an
guage f rom i t s opera t ing sys tem suppor t . C lea r separa t ion o f
the operat ing system provided code that could be leveraged for
the HP-UX project and reduced the cost of maintaining the Model
520 BASIC system. The underpinnings for the HP 9000 mult ip le-
C P U H P - U X s y s t e m a r e t h e s a m e o p e r a t i n g s y s t e m m o d u l e s
used for BASIC.

O v e r 7 5 0 K b y t e s o f c o d e a r e i n t h e B A S I C s y s t e m f o r t h e
Mode l 520 , f o rm ing t he mos t powe r f u l p rog ram deve lopmen t
environment ever provided for an HP desktop computer system.
The resu l t i ng sys tem's speed , g raph ics , and rea l - t ime, even t -
dr iven I /O capabi l i ty make i t a very powerfu l engineer ing tool . A
la rge number o f HP 9845 and Mode l 226 p rograms have been
eas i l y moved on to the Mode l 520 . Per fo rmance ga ins average
50 to 1 00 t imes the performance of the HP 9845B Computer and
more than 10 t imes the performance of the HP 9845, opt ion 200,
for computat ion- l imi ted tasks. The same computat ional tasks av
e rage 15 t imes fas te r than on the BASIC vers ion o f the Mode l
226 Computer .

Acknowledgments
Chris Chr is topher was the lab manager and Bi l l Eads was the

sec t ion manager and temporar i l y managed the graph ics team.
Jef f Eastman developed MODCAL, managed the in i t ia l graphics
team, and chose the CORE sty le p ipel ine. Scot t Wang managed
the tools team responsible for the interact ive debugger and MOD
CAL opt imizat ions, Dave Mait land was responsible for ear ly proj
e c t m a n a g e m e n t o f t h e d e s i g n t e a m , D e n n y G e o r g a n d D a n
Osecky were the pr inc ipa l opera t ing sys tem des igners and the
implementors of the emulat ion tool , Dave Landers made the run
t ime compiler a reali ty, and Dan Osecky was the primary architect
o f the operat ing system support for mul t ip le CPUs.

References
1. Hewlet t -Packard Journal , Vol . 29, no. 8, Apr i l 1978.
2 . J .W. Com E.R. Ze l le r , and S .D. Seccombe, "VLSI Techno logy Packs 32-B i t Com
puter System into a Smal l Package," Hewlet t -Packard Journal , Vol . 34, no. 8, August
1983.
3. Hewlet t -Packard Journal , Vol . 33, no. 5, May 1982.
4. J.G. Hewlett-Pack "Instruct ion Set for a Single-Chip 32-Bit Processor," Hewlett-Pack
ard Journal , Vol . 34, no. 8, August 1983.

-M ichae l L Ko lesa r
-Jack D. Cooley

6 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

HP-UX: Implementation of UNIX on the
HP 9000 Series 500 Computer Systems
b y S c o t t W . Y . W a n g a n d J e f f B . L i n d b e r g

AN IMPLEMENTATION of the UNIX1" operating sys
tem kernel has been layered on top of an existing
operating system kernel for the HP 9000 Series 500

Computer Systems. The mapping of UNIX functional re
quirements onto the capabilities of the underlying operat
ing system is discussed in this article, along with the im
plementation of UNIX commands and libraries. These
pieces of UNIX, along with other extensions added by HP,
make up the HP-UX operating system.

The HP-UX operating system is compatible with Bell
Laboratories' System III UNIX, and supports most of the
standard UNIX commands and libraries. A number of ex
tensions are available, including

FORTRAN 77
â€¢ HP Pascal

C
â€¢ HP's AGP three-dimensional and DGL two-dimensional

graphics subroutines
â€¢ LAN 9000, an Ethernet-compatible 10M-bit/s local area

network
The vi visual editor
Virtual memory
Shared memory
HP's IMAGE data base management system
Support of symmetric multiple CPUs.

HP-UX Operat ing Environment
There are three levels of software in a UNIX system:

commands, libraries, and kernel intrinsics (Fig. 1). The com
mands are user-level programs which can call libraries or
kernel intrinsics. Some commands are provided with the
operating system as standard utilities. One example is the
command interpreter, or shell. Commands can also be writ
ten as normal user programs by the user. Libraries are also
user-level code, but can be called only from a programming
UNIX is a US. t rademark of Bel l Laborator ies.

Hardware

Fig. 1 . UNIX consists of three levels of software â€” commands,
l ibrar ies, and kernel intr insics.

language such as FORTRAN or C. Kernel intrinsics can be
called (normally as functions) from user programs or li
braries, and provide a fundamental set of operating system
operations.

UNIX Kernel Overview
A standard UNIX kernel provides support for I/O, file

system access, process management, real-time clock access,
memory allocation, etc. The set of kernel intrinsics is fairly
small and simple; only basic operations are supported by
the kernel. For example, file manipulation operations such
as copying files are done by commands. The command
interpreter shell is another capability that is implemented
in a user program instead of inside the kernel.
Process Management. The UNIX kernel supports the crea
tion of asynchronous processes that run in the background
while the user executes other interactive programs in the
foreground. Intrinsics are provided for the creation, termi
nation, and synchronization of processes. Special events

Typical HP-UX Commands

C o m m a n d s i n H P - U X a r e r u n b y e n t e r i n g t h e n a m e o f t h e
command. For instance, to l ist the contents of the current working
d i rectory , enter Is . Th is causes a program by that name (which
may be located in one of several default directories) to be loaded
in to memory and to begin execut ing. Other examples of HP-UX
commands are :

cddirpath

pwd

vi filename

rm filename
cp filename destdir
cat filename
cat filename I we

I s - l

Change the working directory to the
directory indicated by dirpath
Prints the ful l path name (f i lename) of
the current work ing d i rectory
Invoke the visual editor to edit file
filename
Remove file filename
Copy file filename into directory destdir
Print the contents of file filename
Print the number of lines, words and
characters contained in file filename,
we is the word count command and its
input, inthiscase, is the output of the
cat command (due to the pipe created
by i).
L is t the contents o f the cur rent work
ing d i rec tory . The - I i s an opt ion
that tells the Is command to emit
addi t ional informat ion. Most com
mands accept one or more options.

- M i c h a e l L C o n n o r

MARCH 1984 HEWLETT-PACKARD JOURNAL 7

© Copr. 1949-1998 Hewlett-Packard Co.

are noted by sending signals to one or more processes from
other processes or from the kernel. The kernel manages
identification fields, such as process ID, user ID, and group
ID, which uniquely identify a process or group of processes.
The exec intrinsic loads a user program (code and data)
into memory from an executable file. The memory model
of UNIX is very simple. It consists of the user's program,
an execution stack, and a dynamic heap which can be
extended or contracted via a kernel intrinsic.
File Manipulation. The UNIX file system is built around
a hierarchical directory structure, allowing a directory to
contain other directories as well as normal files. Kernel
intrinsics are provided to create files, directories, and spe
cial files (devices that are in the filename space). The kernel
also supports creating and deleting links (alternate names)
to files and getting or setting file access modes. A significant
feature is the ability to mount a separate disc volume logically
onto a directory in an on-line volume. This means that all
on-line volumes are part of a single directory hierarchy.
File Access. A single set of I/O intrinsics provides transpar
ent access to files, devices, or the standard input of other
processes. A program normally does not know whether its
standard input is coming from a file, a device, or another
process via an interprocess pipe. Standard operations are
provided, including read, write, open, close and status.
Special device control is provided via the Â¡octl intrinsic.
Miscellaneous. Several other features are supported by the
standard UNIX kernel, such as real-time clock access, log
ging accounting information at process termination, and
profiling the execution of user programs. The profiling and
accounting facilities have not yet been added to HP-UX.

SUN Operat ing System Kernel
When the HP 9000 project began, the operating system

designers took a different approach from that used on HP's
previous desktop computers. Even though the first HP 9000
language system was to be an extension of the BASIC lan
guage system of the HP 9845 Computer, an objective of the
operating system design was to allow other languages in
later versions of the product. The system software was
designed in a modular, layered fashion (see Figs. 2 and 3
on pages 4 and 5). A central operating system kernel provides
a high-level interface to the hardware and machine architec
ture, while other subsystems provide more specific func
tions layered on top of this kernel. This operating system
kernel, called SUN, is described in detail in the article on
page 28.

SUN is written mainly in MODCAL, an enhanced version
of Pascal. MODCAL supports information hiding via mod
ules, an elegant error recovery mechanism, and systems
programming extensions such as absolute addressing. A
small part of SUN is written in assembly language. The
SUN kernel is not visible to the user; instead, it relies on
upper-level subsystems such as BASIC or HP-UX to provide
a user interface. The major pieces of the SUN operating
system kernel handle power-on initialization and memory
and process management, and coordinate the file system,
drivers, I/O primitives, real-time clock, and interprocess
messages.
"Information hiding is a software design approach where the inner workings of an individual
s e c t i o n o r k e p t " h i d d e n " f r o m o t h e r s e c t i o n s . T h i s a l l o w s a s e c t i o n t o b e c h a n g e d o r
updated wi th min imal concern about i ts e f fects on other sect ions.

An unusual feature of the file and I/O system is the ability
to add new directory format structures, device drivers and
interface drivers. These modules can be added without
affecting the existing SUN kernel code.

Some key pieces are missing from SUN by design, notably
the human interface and program loader. The BASIC sys
tem provides its own human interface code, which uses
the integrated CRT and keyboard of the Model 520, the
desktop version of the HP 9000 Series 500 Computers. HP-
UX provides a terminal-style human interface to communi
cate with the user through the integrated CRT and keyboard
as well as through normal terminals. HP-UX and BASIC
also provide their own program loading facilities.

HP-UX Kernel Strategy
The basic strategy of the HP-UX implementation is to

layer the HP-UX kernel definition on top of the SUN kernel.
The exact System III UNIX semantics and syntax are kept,
but the HP-UX intrinsics are implemented using SUN ker
nel support instead of porting the Bell Laboratories kernel
implementation to the Series 500.

A layer of code called the HP-UX layer resides just above
(and in some cases beside) the SUN kernel, as does the
BASIC subsystem. However, BASIC and HP-UX are mutu
ally exclusive; only one can be loaded at a time.

The HP-UX layer performs any necessary transforma
tions between UNIX formats and the corresponding SUN
formats (e.g., the real-time clock format). It calls procedures
in SUN whenever appropriate, but still has full access to
the hardware and architecture when needed. The HP-UX
layer maintains a number of higher-level data structures
to manage HP-UX user processes and user resources.

This layering strategy has a significant impact on the
implementation detail of the HP-UX layer. For example,
MODCAL is used instead of C as the implementation lan
guage. However, user-level code written for System III
UNIX will run on HP-UX, unless it depends on certain
internal implementation details such as the directory for
mat structure or invisible internal system data structures.

The advantages of this layering approach come in two
main categories â€” leverage and opportunities for contribu
tion. A large portion of hardware-dependent code was al
ready written for the Series 500 and its peripherals. Using
the SUN kernel made it unnecessary to rewrite this code
for HP-UX. Existing modules used include device and in
terface drivers â€” especially significant because of the com
plexity of the HP-IB (IEEE 488) and the new HP CS-80
discs â€” low-level memory management, power-up code,
process scheduler, architecturally dependent utility rou
tines, and other machine-dependent code.

SUN has a number of features that are not present in
UNIX; these fea tures p rov ide oppor tun i t i es fo r
HP-UX to make a contribution over other UNIX implemen
tations. These include real-time performance in the area
of interrupt response time and process switching, support
for multiple CPUs, reliability in the face of system errors,
support for variable-size independently managed dynamic
memory segments, semaphores, and low-level device I/O
capability. Also, HP's IMAGE data base management sys
tem was already implemented on top of SUN for the BASIC
system. This code was ported to the HP-UX environment

8 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

What is UNIXâ„¢?

The popular i ty of the UNIXâ„¢ operat ing system developed by
Be l l Labora to r ies has been inc reas ing s ince i t became opera
t i ona l i n 1971 . Today , i t i s rap id l y becoming the mos t popu la r
operat ing system for mid-sized computers and runs on numerous
mach ines made by d i f f e ren t manu fac tu re rs . The re have even
been those that have l ikened UNIX's ro le in operat ing systems
today to FORTRAN'S ro le in computer languages some twenty
years ago.

UNIX was deve loped by Ken Thompson and Denn is R i t ch ie
o f Be l l Labora to r ies . Bo th men had been work ing on a p ro jec t
cal led Mul t ics (an acronym for mul t ip lexed informat ion and com
put ing serv ice) , wh ich was a la rge mul t iuser opera t ing sys tem
that was eventual ly cancel led by Bel l Laborator ies. From there,
Thompson, and then R ich ie , went on to deve lop UNIX. As you
might expect , many of the more desi rable features found in Mul
t ics were incorporated in the UNIX design. In fact, even the UNIX
name was adopted f rom a p layfu l tw is t ing of "Mul t ics . "

As the years went by, the UNIX systems within Bell Laboratories
evo lved unt i l vers ion s ix (V6) was deve loped about 1975. Th is
version became quite popular in a number of universi t ies around
the world, including the University of California at Berkeley (UCB).

Vers ion seven was re leased in 1978 and quick ly rep laced V6
in mos t i ns ta l l a t i ons . Th is ve rs ion i s the base fo r mos t o f the
c o m m e r c i a l U N I X l o o k - a l i k e s , o f w h i c h t h e X e n i x s y s t e m d e
ve loped by Microsof t i s probab ly the best known. I t i s a lso the
vers ion on which UCB bu i l t the i r popular enhanced vers ions o f
U N I X . E a c h U C B v e r s i o n r e l e a s e d c o n t a i n e d a f e w e n h a n c e
ments over the previous releases. UCB's versions are designated
by xBSD, whe re x i s t he ve rs i on number and BSD s tands f o r
Berkeley Software Distr ibut ion. 4.2BSD is the most recent.

In early 1982, Bell Laboratories released System III UNIX. This
vers ion is the base for HP-UX (HP's vers ion of UNIX), a l though
HP-UX a l so i nco rpo ra tes some o f t he n i ce r f ea tu res found i n
UCB's 4.1 BSD version.

Sys tem V UNIX was re leased by Be l l Labora to r ies in 1983 .
B e l l w i l l b e t h a t a l l o f t h e i r f u t u r e U N I X v e r s i o n s w i l l b e
compat ib le wi th System V.

UNIX Popularity
Exact ly why UNIX has become so popular is a hard quest ion

to answer, but the reasons probably inc lude:
S imp l ic i t y . The UNIX sys tem can be broken in to fa i r l y smal l
i ndependent p ieces . Each p iece can be comprehended ind i
vidually and at a pace that is comfortable for a user. Few users
ever need to learn a l l the features provided by UNIX.

â€¢ Power. The pieces of the system can be connected synergis-
t ical ly and manipulated at execut ion t ime, the I /O can be redi
rec ted , t he ou tpu t o f one p rocess can be connec ted to t he
input pro another (forming a "pipel ine" of arbitrary length), pro
cesses can be executed in foreground or background, a com
mand l is t can be developed and then executed when desi red
and as of ten as desi red, etc.
F lex ib i l i t y . P ieces o f the UNIX sys tem a re eas i l y added , re
p l a c e d , o r d e l e t e d . S y s t e m r e c o n f i g u r a t i o n i s q u i c k a n d
straightforward.
Software. Bell Laboratories, Hewlett-Packard, and a lot of other
companies and individuals have put a lot of effort into develop
ing a large software basethat runs in the UNIX environment.

UNIX is a U.S. t rademark o(Bel l Laborator ies.

â€¢ Ease o f po r t i ng . Mos t o f t he UNIX sys tem i s w r i t t en i n a
mach ine - independen t manner . I t has been po r ted to a num
be r o f d i f f e ren t compu te r a r ch i t ec tu res w i t h r e l a t i ve l y f ew
problems.

Features
UNIX has many features. Some of them are:

â€¢ The shel l . The shel l is a program that provides the interface
be tween the user and the UNIX sys tem. I t i s a command in
te rpre ter tha t takes input f rom the user and executes the re
quested commands. I t can also take input f rom an ASCII com
mand f i l e , wh ich i s genera l l y re fe r red to as a "she l l sc r ip t . "
When a command is executed , i t can be passed arguments ,
have i ts standard I /O f i les redirected, and/or be placed in the
background , a l l t h rough p rov is ions bu i l t i n to the she l l . The
shell also has f low control structures that al low condit ional and
mult ip le execut ion of command l ists. Because of the f lexibi l i ty
o f UNIX, the shel l can be replaced by a d i f ferent program. In
fac t , UCB has chosen to do jus t tha t and prov ides the i r own
version of the shel l cal led the C shel l .

â€¢ The C Language. C was developed concurrent ly wi th UNIX
at Bel l Laborator ies. I t is a medium-level language wi th many
of the features found in Pascal and other high-level languages.
I t p r o v i d e s a p r o g r a m m e r w i t h a l o t o f p o w e r a n d f e w c o n
s t ra in ts . Most imp lementa t ions o f the UNIX kerne l and most
of the UNIX commands are written Â¡n C.

â€¢ Other languages. Current ly HP-UX on HP's HP 9000 Ser ies
500 and Ser ies 200 Compu te rs o f fe rs comp i le rs fo r Pasca l
and FORTRAN 77 in addi t ion to C.
Full set of commands. Commands to maintain the UNIX system
and the f i le sys tem, ed i to rs , tex t p rocessors , and numerous
other commands are included in HP-UX. The popular v i edi tor
f rom UCB is inc luded in th is set .

â€¢â€¢â€¢ A compute set of library routines. These include routines to compute
common math funct ions, to per form format ted I /O, to access
kernel intr insics, and, on the HP 9000 Ser ies 500 Computers,
rout ines to manipulate vir tual memory objects, to do DGL/AGP
graph ics , and to access an IMAGE data base.

â€¢ Data communicat ion support . System I I I and other vers ions
o f UNIX prov ide a set o f UNIX- to-UNIX copy (uucp) serv ices
to a l l ow the user to pass f i l es f rom node to node in a UNIX
network. A sophis t icated e lect ron ic mai l system has been im
p lemen ted by us ing these se rv i ces . To these , t he HP 9000
Ser ies 500 Computers add a loca l area network (LAN 9000) ,
general terminal emulator capabi l i t ies, and remote job entry.

M Source code control system (SCCS). This is a set of commands
tha t he lps the p rogrammer keep t rack o f changes to source
files.

Further Reading
1. H. McGi l ton and R. Morgan, In t roduc ing the UNIX Sys tem, McGraw-Hi l l , 1983. A
good tutorial.
2. R Thomas and J. Yates, A User Guide to the UNIX System. OSBORNE/McGraw-Hi l l ,
Berke ley. 1982 Another good tu tor ia l
3 . Be l l en t i re Techn ica lJouma l , Vo l 57 , no . 6 , Pa r t 2 , Ju l y -Augus t 1978 The en t i re
issue is dedicated to UNIX of about vers ion seven
4 H P - U X r e f e r M a n u a l . H e w l e t t - P a c k a r d P u b l i c a t i o n 0 9 0 0 0 - 9 0 0 0 4 A g o o d r e f e r
ence, but not easy for a nov ice to understand
5. HP-UX Selected Ar t ic les , Hewlet t -Packard Publ icat ion 97089-90002 Nineteen ar t i
c les on some of the large components found in UNIX.
6 . S.R. Bourne, The UNIX System. Addison-Wesley, 1983 A good in t roduct ion.

- M i c h a e l L C o n n o r

MARCH 1984 HEWLETT-PACKARD JOURNAL 9

© Copr. 1949-1998 Hewlett-Packard Co.

to provide this important HP standard data base capability.
An important concern was the performance of a layered

implementation; the risk was that conversion between the
SUN format and the HP-UX format would increase operat
ing system overhead. The experience actually observed
after the product was completed was that the HP-UX layer
itself is responsible for approximately 10% of the CPU time
used by the kernel, and nearly all of that time is spent
doing useful work such as loading programs. This means
that SUN is afairly good match f or the HP-UX requirements,
because little time is wasted on conversion between SUN
and HP-UX formats.

Matching SUN and HP-UX
This section describes the areas of the SUN operating

system that were changed or augmented to support the
requirements of HP-UX. Only areas that are important to
mapping the UNIX semantics onto the original SUN kernel
are described in depth.
File System. There was already a good match between the
SUN operating system and HP-UX in the hierarchical direc
tory structure of the file system. The existing directory
format was modified to fit HP-UX semantics rather than
implement the standard UNIX disc format in MODCAL.
The fundamental operations such as read, write, open, and
close were already supported in a satisfactory manner in
SUN; no significant changes to these were necessary.

However, the file system itself was the area that required
the largest changes in SUN. One of the biggest additions
was the support of device files, special files that map de
vices such as printers or terminals into the same name
space as regular files. The SUN file system expected device
and file accesses to be made separately. Special checks had
to be made for special file types; the new device file code
performs operations for device files equivalent to those
originally performed only for regular files.

Another large change was support for mounting disc vol
umes onto an on-line directory so that all accessible files
and directories are part of a single directory hierarchy.
Again, special code was added to check each directory
access; if the directory has another volume mounted on it,
the access is redirected to the root directory of the mounted
volume.

The third area of major change was file access protection
semantics. The UNIX read/write/execute and user/group/
other mechanisms used to control access to files were not
originally in the SUN file system protection scheme. This
could have been added, along with the standard UNIX disc
format structure, to a separate directory format module,
since SUN supports multiple directory format structures.
However, the characteristics of the existing format were so
close to those desired that the SUN format and protection
scheme were adapted to the HP-UX requirements instead.

Changes were made in the SUN file system to support
pipes and FIFO (first-in, first-out) files. In the early versions
of HP-UX, pipes were implemented in the HP-UX layer.
However, they have been moved inside the SUN file system
for performance reasons. A number of minor HP-UX file
system operations had to be added to SUN. These include
changing the owner of a file, reading or changing file access
modes, and duplicating an open file descriptor.

Some operations are performed in the HP-UX layer.
These include parsing multilevel path names, managing
the user's open files table, and enforcing file size limits on
extending files.
I/O. In the area of device I/O, the existing SUN I/O system
was a very good match for the needs of UNIX. Virtually no
changes were made to the I/O primitives that provide the
interface to the backplane and I/O processor, the bus
bandwidth management code, the drivers for interface
cards, or the disc and tape device drivers.

The major changes came in the internal and external
terminal support. The external terminal driver is based on
the existing serial interface driver, but adds UNIX tty seman
tics such as type-ahead, line buffering, mapping carriage
return/line feed to newline, and sending the interrupt and
quit signals. The Model 520 Computer's integrated keyboard
and CRT device control code is based on the work done
for the BASIC system's human interface. But the functional
operation of the integrated "terminal" had to be completely
redone to be compatible with HP terminals.
Memory Management. Because of the simple memory
model of HP-UX, the memory allocation intrinsics are eas
ily supported on most operating systems, including the
SUN kernel. The major changes in the SUN memory man
agement system were required by the addition of virtual
memory and shared memory, which are extensions rather
than semantic requirements of UNIX. The HP-UX layer has
the responsibility of keeping track of the user's memory
use and deallocating this memory when a process or pro
gram terminates.
Program Loading. No explicit function for loading and
executing programs is present in the SUN operating system,
but the underlying support needed is there. The file system
is used (with minor changes) to find and read the program
file, and the memory management system provides the
mechanism for allocation of code and data segments. No
major changes were required in the SUN kernel to support
program loading.

The HP-UX layer manages shared code segments, which
allow multiple processes to share a single copy of the code.
The HP-UX layer also handles relocation of code and data
segments at load time and meets the segment attribute re
quirements requested by the object file format.
Process Management. The HP-UX process management in
trinsics are supported fairly well by the SUN kernel, but
two areas required a significant effort: fork and signal. The
fork system call creates a new process in the exact image
of the calling process. It returns to both the parent and
child processes, just after the fork call, at the point where
the function return value distinguishes the child from the
parent. Creating an exact copy of a process is not a typical
operation supported by normal operating systems, includ
ing the SUN kernel.

At the SUN level, code was added to support the "clon
ing" of a process. The cloning operation allocates memory
for the child process and initializes SUN modules for the
new process. It is also responsible for duplicating the con
tents of the parent's segment table in the child's segment
table and creating an exact image of all the parent's seg
ments in the child's address space, including virtual mem
ory segments and the stack segment.

10 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

The HP-UX layer then initializes the new process. This
includes allocating an HP-UX process control block, copy
ing some fields from the parent's process control block,
and initializing other unique fields such as process ID and
parent process ID. It also increments use counts on shared
objects such as shared code segments and open files. Fi
nally, the HP-UX layer returns the appropriate value to the
parent (child's process ID) and to the child (zero).
Signal Implementation. The implementation of signal, a
mechanism for interprocess event notification and excep
tion reporting, was a significant portion of the HP-UX layer
development. SUN had no explicit support for sending
asynchronous signals between processes, but did have most
of the tools necessary to implement this feature.

One tool is the ability of subsystems to install trap han
dlers for most classes of traps possible on the Series 500
Computers. Signal processing is initiated by triggering an
Ml (machine instruction) trap in the target process, which
causes the Ml trap handler to be entered on the next machine
instruction executed. This handler is responsible for pro
cessing the signal received and taking the specified action.
This can be calling a user-specified signal handler, ter
minating the process, or just ignoring the signal.
Other Process Management. The process scheduler met
the requirements of HP-UX in the original SUN implemen
tation, but has been improved to allow dynamic process
priority adjustment to reward interactive processes. (It is
currently being enhanced to suspend low-priority pro
cesses during heavy system loads.) SUN supports the cre
ation of special system processes that can provide specific
system services. These system processes communicate
with user processes and each other via SUN's mailbox-style
interprocess messages. Also, a sophisticated set of
semaphore operations is provided for synchronization of
all processes in the system. This is especially important in
a multiple-CPU system; merely disabling interrupts does
not ensure exclusive access to a shared data structure, be
cause other processes may be running simultaneously on
other CPUs.

The following process management functional areas are
implemented in the HP-UX layer:
â€¢ Higher-level support of fork such as allocation and in

itialization of a process control block for the new HP-UX
process

â€¢ Higher-level support of signal, including sending and re
ceiving signals, and specifying action to be taken on
receipt of a signal

â€¢ Management of user, process, and group IDs
â€¢ Process termination, including deallocation of resources

owned by the user process
â€¢ Wait for a signal or for termination of a child process
â€¢ Management of HP-UX process control blocks.

The functional areas listed below are completely sup
ported by the SUN kernel, except for those changes noted.
â€¢ Power-up
â€¢ Multiple-CPU support
â€¢ Trap handling
â€¢ Real-time clock: the HP-UX layer performs the conver

sion between SUN time format and HP-UX time format
â€¢ Alarm clock: the HP-UX layer creates a system process

that wakes up each second to see if any alarm signals

need to be sent
â€¢ CPU times; a minor change was made to the timer inter

rupt service routine to increment the CPU time used by
the current process.

Upper-Level Software Strategy
Working in parallel with the SUN and HP-UX kernel

design groups was another group of software engineers
who were responsible for the upper-level commands and
libraries. The UNIX system from Bell Laboratories contains
more than 300 commands and over 200 library subroutines.
Consisting of more than 300,000 lines of C source lines,
these constitute the bulk of the UNIX system. The majority
of HP-UX upper-level software on the Series 500 Computers
is based on these UNIX System III commands, plus several
from the 4.1BSD version of UNIX from the University of
California at Berkeley (UCB).

For implementation priorities, the upper-level software
team first categorized the commands and libraries into dif
ferent groups based on their usefulness. For example, in
itialization and file manipulation commands were all in
the first group. Useful tools were in the second group and
other commands and libraries, such as those used for text
processing, were in the third group. Then the C source
code of the first two groups was studied in some detail
using a C cross referencer to determine which system intrin-
sics and libraries were used. The data resulting from the
study was stored in an HP 9845 IMAGE data base from
which many useful reports were produced. For example,
a system intrinsic implementation priority list was gener
ated based on the highest-priority commands to guide the
kernel group in their implementation. As new system in-
trinsics were brought up, the upper-level software team
was able to determine from the data base what additional
commands could be brought up with the newly available
intrinsics.

Another IMAGE data base was used to keep track of all
commands and libraries in terms of implementation prior
ity, responsible engineer, porting status, source origin, etc.
This proved to be very useful for managing the project and
keeping other departments informed about the status of
each command.
Porting Commands and Libraries. Four major tools were
necessary to port the upper-level software: a C-to-HP-9000
cross compiler, an assembler, a linker, and a cross compi
lation machine. The upper-level software team used a re
motely accessible VAX/750 running UCB UNIX as the cross
compiling environment. Other tools to move files to and
from the VAX/750 were developed as necessary.

After the initial system was up and running, the major
focus was to make the C compiler resident on the Series
500 by cross compiling it. We had a resident environment
two months later. From that point on, all development
work was done on a Model 520 Computer running the
latest (sometimes experimental) kernel. The upper-level
software development system then grew from one single-
user system to two multiuser systems linked with a local
area network.

The majority of the commands and libraries were ported
over to the Series 500 with little or no modification, that
is, most of them ran after compilation. However, the follow
ing types of changes were necessary.

MARCH 1984 HEWLETT-PACKARD JOURNAL 1 1

© Copr. 1949-1998 Hewlett-Packard Co.

HP-UX: A Corporate Strategy

Wi th t he i n t roduc t i on o f HP-UX on the HP 9000 Se r i es 500
Computers , Hewlet t -Packard has made a s t rong commitment to
the use of an enhanced version of UNIXâ„¢ as a standard operating
system for i ts new computer products. Through this commitment,
HP i s make to e l im ina te un ique so f tware a t t r i bu tes tha t make
e n d - u s e r p r o g r a m s d i f f i c u l t t o " p o r t " f r o m o n e c o m p u t e r t o
another . Programmers can now des ign the i r so f tware to run on
an a r ray o f HP mach ines , concen t ra t i ng on modu la r i z i ng and
scal ing thei r appl icat ions to best sui t each computer 's pr ice/per
formance character is t ics.

Why UNIX?
Since any operating system standard would simplify the port ing

p rocess and improve p rogrammer p roduc t i v i t y , why was UNIX
selected as the heart of HP's sof tware st rategy?

UNIX is ga in ing wide acceptance as an indust ry s tandard for
1 6 - b i t b e 3 2 - b i t m i n i c o m p u t e r s . I t s p o p u l a r i t y i s p a r t i a l l y b e
cause i t has been easy to implement on a var ie ty of processors
and computer a rch i tec tures . Th is por tab le charac ter is t i c made
UNIX an Â¡deal choice as a compat ib le operat ing system for the
dist inct archi tectures of current HP 9000 members: the 16/32-bi t
68000 m ic rop rocesso r -based Se r i es 200 Compu te r s (Mode l s
220 and 236) and HP's propr ietary 32-bi t VLSI-based Series 500
Compute rs (Mode ls 520 , 530 , and 540) . UNIX i s a l so p lanned
for fu ture members of the HP 9000 fami ly .

The popular i ty enjoyed by UNIX has a synerg is t ic ef fect . Sof t
ware appl icat ions are being designed for the UNIX envi ronment
a t an inc reas ing ra te , wh ich in tu rn encourages more UNIX im
plementat ions. Most of th is sof tware wi l l run on HP-UX, thereby
mak ing HP 's compu te rs more a t t rac t i ve to a l a rge r aud ience .
Fur thermore , UNIX i s s tud ied and taught in mos t ma jo r un iver
s i t ies . Today 's computer sc ience graduates wi l l eventual ly in f lu
e n c e o r b e c o m e t h o s e w h o s e l e c t c o m p u t e r s f o r c o m m e r c i a l
and sc ien t i f i c use . UNIX-based p roduc ts a re l i ke l y t o rece i ve
s t rong considerat ion dur ing the se lect ion process.

What Is HP-UX?
HP-UX is a combinat ion of Bel l Laborator ies ' UNIX operat ing

system, port ions of the University of Cali fornia at Berkeley (UCB)
UNIX is a U.S. t rademark of Bel l Laborator ies.

â€¢Kernel. Libraries
â€¢C Compiler, vi
â€¢Other Commands
â€¢(System V Semantics)

â€¢System III Kernel, Libraries
and Command

â€¢(System V Semantics)

â€¢Graphics, Games
â€¢Experimental Functions
â€¢Seldom-Used Functions

Key:
() D e f i n i t i o n i n

progress

implementat ion of UNIX and Hewlet t -Packard sof tware enhance
ments. Through UNIX, HP-UX facil itates easy importation of UNIX-
der ived programs and of fers a consis tent , powerfu l program de
velopment environment. Complementary extensions address the
Manufac tu re r ' s Produc t i v i t y Ne twork (MPN) , HP 's v iew o f how
computer sys tems can be used in manufactur ing organ izat ions
to improve product iv i ty .

Rather than implement ing every funct ion of Bel l Laborator ies '
Sys tem I I I UNIX, fea tu res were inc luded based on the i r impor
t ance i n po r t i ng s tanda rd so f twa re o r t he i r abso lu te p rog ram
d e v e l o p m e n t v a l u e . U s i n g t h e s e g u i d e l i n e s , a c o m p a t i b i l i t y
h i e r a r c h y w a s d e v e l o p e d i n w h i c h k e r n e l s e r v i c e s b e c a m e a
" m u s t , " l i b r a r y s u b r o u t i n e s a " h i g h w a n t , " a n d c o m m a n d s a
"want."

As a resu l t o f t h i s approach , HP-UX inc ludes a l l Sys tem I I I
kernel intr insics and al l l ibrar ies except for a handful of graphics
subrou t ines . More than 125 o f the most use fu l Sys tem I I I com
m a n d s a n d a s m a l l b u t i m p o r t a n t n u m b e r o f U C B c o m m a n d s
are also offered.

To sa t i s f y cus tomer requ i remen ts , enhancemen ts cove r i ng
programming languages, g raph ics , da ta base management , de
vice and instrumentat ion I /O, local area networking, and fr iendly
user interfacing are being standardized. These extensions, which
appear as addi t ional kernel int r ins ics, l ibrar ies, and commands,
will bridge the gap between HP's HP-UX and non-HP-UX computers.

Addi t ional enhancements assist in migrat ing appl icat ions sof t
ware f rom current propr ie tary HP operat ing systems to HP-UX.
One of these too ls , the Appl icat ions Migrat ion Package (AMP),
converts the HP 1 000 Computer's RTE calls to HP-UX calls. AMP
rev is ions are p lanned as HP-UX is expanded to meet rea l - t ime
control requirements.

New so f tware fea tu res a re no t the on ly fo rm o f HP enhance
ments . On-going t ra in ing a l lows sa les and technica l suppor t or
ganizat ions to provide complete services before and after sales.
Easy- to - read tu to r ia l s and re fe rence manua ls a id bo th nov ice
and experienced users. Exhaustive R&D software testing ensures
re l iable operat ion and minimal downt ime.

S ince HP-UX i s p lanned fo r many fu tu re HP compute rs , HP
w i l l s u p i n v e s t m e n t s a l r e a d y m a d e i n t h e s e i m p o r t a n t s u p
port areas. By avoiding the massive re investments cont inuously

â€¢is, Other Commands
â€¢Network, Real-Time

Support
â€¢(C Shell, Mail)

â€¢Memory Control
â€¢Graphics, Games
â€¢Hardware Dependencies
â€¢System V Conflicts
â€¢Seldom-Used Functions

Not HP-UX

â€¢Memory Control
â€¢Local Area Network
â€¢Graphics, Data Base Management,

FORTRAN, Pascal
â€¢(Localization)
â€¢(Device I/O, Real-Time)

F i g . 1 . I n f l u e n c e o f B e l l L a b
o r a t o r i e s , U C B , a n d H P e x t e n
sions on the direction of the HP-UX
definition.

12 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

required of new software systems, HP can concentrate on improv
ing al l aspects of HP-UX in the future.

HP-UX Standards Enforcement
Compliance with the HP-UX standard is enforced through com

prehensive sets of val idation programs. Automated test programs
mon i to r p roper opera t ion o f a l l ke rne l i n t r i ns i cs , Sys tem I I I l i
b r a r i e s , t w o - d i m e n s i o n a l a n d t h r e e - d i m e n s i o n a l g r a p h i c s l i
b ra r ies , and the FORTRAN and Pasca l compi le rs . As the s tan
dard evo lves, add i t iona l va l idat ion programs wi l l be deve loped
to ensure consis tency across a l l HP-UX computers.

Overa l l management o f the s tandard is the ongoing responsi
b i l i ty of the HP-UX Steer ing Commit tee. Consist ing of represen
tat ives f rom several HP div is ions, th is commit tee meets monthly
to resolve pert inent HP-UX issues and to review the status of the
var ious HP-UX work ing groups. These groups, a lso w i th broad
d iv is ional representat ion, cover technica l , market ing, documen
tat ion, and customer support issues in more detai l . Each division
w o r k s t h r o u g h i t s r e p r e s e n t a t i v e s t o p r o p o s e a d d i t i o n s o r
changes to the s tandard.

Future Direction
Perhaps the most crit ical issue in establishing the future course

fo r HP-UX is i t s degree o f compat ib i l i t y w i th Be l l Labora to r ies
and UCB. Whi le 4 .2BSD UNIX (Rev is ion 4 .2 Berke ley Sof tware
Distr ibut ion) is current ly the superior version, Bel l is developing
improved versions that could eventual ly surpass 4.2BSD in capa
bi l i ty and rel iabi l i ty. In addi t ion, four microprocessor manufactur
ers intend to of fer System V, Bel l 's latest UNIX version, on their
microprocessor products . System V can potent ia l ly become the
most a f fordable UNIX and thus the UNIX of cho ice for por tab le
appl icat ion programs.
â€¢Intel, Motorola, National Semiconductor, and Zilog.

In cons iderat ion o f these factors , the Bel l System I I I vers ion
has been chosen as the base standard. The compat ib i l i ty h ierar
chy wil l determine which port ions of System V and i ts successors
are HP-UX candidates.

Extens ions beyond the Bel l vers ions can be expected i f they
fa i l to meet HP requ i rements in a t ime ly fash ion . However , we
pre fer to adopt an ex is t ing UNIX-based implementa t ion (i f one
ex is ts) before embark ing an an or ig ina l des ign pro ject . A poten
t ia l ly r ich source of enhancements current ly under invest igat ion
i s UCB's 4 .2BSD vers ion . We an t i c ipa te add ing such UCB fea
tures as the C shel l , mai ler , and selected kernel int r ins ics.

Microsof t 's Xenix, wi th i ts large instal led base and potent ia l ly
r i c h t h e o f U N I X a p p l i c a t i o n s p r o g r a m s , c o u l d i n f l u e n c e t h e
HP-UX standard. Since Xenix and HP-UX are select ively adding
Bell System V and UCB features to the same System III definit ion,
conformance between the two systems is l ike ly .

Fig. and il lustrates the major influence of the HP extensions and
the Bel l releases on the HP-UX direct ion. I t also recognizes UCB
as a promis ing contr ibutor of addi t ional funct ional i ty .

In suppor t o f low-cos t computer sys tems, we are examin ing
methods of subsett ing HP-UX without sacr i f ic ing compat ibi l i ty or
easy growth to the h igher -per formance sys tems. Code compac
t ion and reduct ion techniques for both the operat ing system ker
ne l and the d isc res ident commands are be ing cons idered . An
exci t ing technique under invest igat ion is a high-performance dis
t r ibu ted HP-UX operat ing sys tem, which a l lows ind iv idua l work
stat ions to re ly tota l ly on shared network per ipherals. Thus, the
cos t per sys tem is d ramat ica l l y reduced , bu t loca l p rocess ing
power is maintained.

HP-UX wil l be modif ied to support several European languages
and the 16-b i t Kan j i charac te r se t . Thus , loca l i zed app l i ca t ion
program solut ions wi l l be possib le.

â€¢Michael V. Hetrick

A new system intrinsic entry point mechanism was de
veloped because the kernel was written in MODCAL and
the rest of the system was in C.
Some data structures contained in the C header files
needed to be modified to match the HP-UX layer data
structures. (Header files contain data and structure decla
ration statements for C programs.) The commands that
needed these header files were examined in detail to see
if modification was necessary.
A few commands were rewritten completely because the
kernel was not the original standard kernel. For example,
fsck, the file system integrity checker and maintainer,
was rewritten because the SDF (structured directory for
mat) file system is physically different from the UNIX
file system. The process status command ps was modified
extensively because of data structure differences.
Another example was the mknod command which creates
special files to communicate with I/O devices. It was
modified to match the UNIX semantics to HP-IB I/O de
vices. However, all the commands were kept as compat
ible as possible with System III UNIX commands.
The Series 500 supports IEEE floating-point format; as
a result, the UNIX math library was replaced with HP's
own implementation.
Twenty-one new commands were implemented that
apply to the Series 500-based HP-UX. These deal primar
ily with machine-dependent features such as disc boot
area management, disc initialization, setting virtual

memory parameters, and system installation and update.
The handling of DC600 tape cartridge data on HP's new
CS-80 discs also required special support.

Problems During Porting. The problems encountered in
porting the commands and libraries can be categorized in
two areas â€” architecturally dependent and architecturally
independent. Architecturally independent problems were
mostly anomalies found in the original UNIX code. We
logged over 281 new bug reports during the port project.
Over 60% of these bugs were fixed. The others were either
classified as not worth fixing or waiting to be fixed.

Architecturally dependent problems were usually
caused by dereferencing of nil pointers or dependency on
the direction of stack growth. On the VAX/750 implemen
tation of UNIX, a nil pointer dereference returns a zero.
On the HP 9000 Series 500 HP-UX, a system trap occurs.
This architectural dependency is relied on in many places
in the standard UNIX commands and libraries, and each
of these needed to be corrected. These usually manifested
themselves in a memory fault error message. Fortunately,
this error was relatively easy to fix in the source code.

The stack grows towards high memory (up) on the Series
500 and down on the VAX/750. For example, the printf sub
routine in the standard I/O library can have a variable
number of parameters and the pointer used to access the
parameters on the stack is decremented rather than in
cremented. Other architecturally dependent features in
cluded the byte order swap of the VAX/750 hardware where

MARCH 1984 HEWLETT-PACKARD JOURNAL 13

© Copr. 1949-1998 Hewlett-Packard Co.

low and high bytes are reversed. This made reading cpio
archive format tapes from the VAX/750 a chore in the be
ginning. Now HP-UX defines a new -p option to the cpio
command which does the byte swap.

The upper-level software team did not have a user-level
debugger available to debug the C programs. Instead, the
kernel-level HP 9000 debugger was used to debug the com
mands. It was cumbersome to set up the initial breakpoint,
but quite effective after that. (A user-level symbolic debug
ger is being developed.)
Shared Libraries. The Series 500 architecture supports
shared code segments, thus allowing the implementation
of a special shared library for major portions of the standard
C library. That is, there is only one copy of the library in
the system shared by all system commands that are linked
in the standard C library. (The shared library feature is not
currently available to user programs.) This saved typically
7K bytes of code space for each command (just about all
of the commands used the C l ibrary). This, in turn, im
proved load-time performance and saved disc space.
SCCS and the Build Process. UNIX is touted as one of the
best program development environments avai lable , be
cause it provides many software engineering tools. The
source code control system (SCCS) is one such tool that
the upper-level software team took advantage of throughout
the project life cycle. The SCCS was brought up and used
as soon as a l l kernel suppor t was avai lable . The Bel l
Laboratories System III source code was put under SCCS
as the baseline and all upper-level software changes were
built on top of it. Each upper-level software team member
adhered to a simple set of rules that applied to the access
and update of the controlled source. This proved valuable
for day-to-day sof tware development , providing who,
when, how, and why information about code changes.

SCCS maintains revision numbers to allow access control
and retrieval of any version of the source code. I t also
supports checksums of the source files to check for corrup
tion. This was important since code development was done
in para l le l wi th the f i l e sys tem deve lopment and the
checksum is a simple physical integrity check. SCCS was
indispensable later during quality assurance testing and
the code freeze period just before each major system release.

System build scripts were written to manage the compi
lation of all the commands and libraries from the SCCS
source directory automatically. The build procedure, along
with the scripts, was able to handle compiler, assembler
and linker updates, getting the source, and compiling the
system in proper sequence. This was important for system-
wide changes such as object file format changes or major
updates in the compiler or other tools. The scripts also
controlled the target file system structure, setting file own
erships, access permissions, etc. They also managed the
SCCS update revision level of each system build such that
any change occurring after the build started would be at a
higher level and would not be included in the current build
even if the build process had to be restarted for some reason.
The build scripts evolved through the life of the project
and became a major tool for system releases. The final build
of the 3.3M-byte system took around 17 unattended hours
to complete.

Compatibil i ty
The upper-level software porting experience indicated a

high degree of compatibility between the HP-UX layered
kernel and the UNIX System III kernel. Out of 126 ported
commands from System III, 57 required no modification
at all, 44 required less than 10 lines of modifications, 16
required between 10 and 30 lines of modifications, and 9
required more than 30 lines of modifications. Most modifi
cations were to fix bugs. These commands do not include
development tools such as a compiler, an assembler, and
a linker, nor do they include UCB UNIX commands.

Extensive effort was made to ensure compatibility with
Bell Laboratories' System III UNIX. First, a "minimum
touch" strategy on the System III source code was used.
The design team did whatever was necessary to make the
commands and libraries work, but beyond that they did as
little modification as possible. Temptations to clean up the
code were strongly discouraged. Each reported bug was
evaluated to determine whether it should be fixed and if
so, how.

Second, validation suitesf were used to ensure compati
bility with System III. The priority for the validation suites
was to validate the kernel first, then the libraries, and fi
nally the commands. 100% of the kernel intrinsics were
validated. A significant effort was invested in the kernel
validation suite. It was run after each new kernel was built.
92% of the subroutine libraries have validation tests and
all are incorporated into an automatic test suite. 22% of
released commands have validation tests. The validation
suites were written with verification of the functionality
in mind rather than exhaustive quality assurance testing.

The automatic validation test suite is organized for ease
of use. There are two types of tests â€” one related to the root
user and the other related to the typical user. The automat
ic test suites were provided to the software system integra
tion team for testing commands and libraries with other
major subsystems.

Acknowledgments
We would like to thank the following people for their

contributions to the HP-UX effort. Fred Clegg at HPDA (HP
Design Aids) spearheaded the UNIX effort in HP. Rich Ham-
mons and Richard Tuck, then at HPDA, did the early work
on the C cross compiler, assembler, and linker. Bill Wil
l iams at HPDA worked on the kernel val idat ion sui te .
Everyone associated with the upper-level software effort
worked on commands one way or another: Debbie Bartlett
worked on the libraries and build scripts and managed the
system build process, Xuan Bui worked on the command
and automatic validation suites, Mike Connor was the lead
engineer and did the initial work on the MODCAL and C
compilers and assemblers , the shel l , and the fsck sub
routine, Kathy Harris worked on the SCCS and then did
the subsequent work on the C compiler and the assembler,
John Harwell was the system manager and worked on the
tcio and command validation suites, Ken Lewis did the
system performance characterization, J.L. Marsh worked
on the vi editor, systems integration, and installation tools,
Mike McCarthy worked on the MODCAL and HP-UX lin
kers, Marty Osecky did the subsequent work on the assem-
^A su i te here re fers to a set o f programs for a common purpose.
'Referred to as a super user in UNIX, a user exempt f rom normal secur i ty checks.

14 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

bier, Don Rosenbaum and Rick Dow from HP's Colorado
Networks Operation (CNO) worked on RJE and the uucp
and cu datacomm commands, Alan Silverstein did the work
on the HP 9000 debugger, system manager, tool builder,
and systems integration, Ron Tolley worked on system per
formance characterization, and Helen Vu worked on the
schema and library validation suites.

The following people contibuted to the HP-UX kernel
effort: Mike Berry, HP-UX file system, Barb Flahive, pipes,
magnetic tape and printer support, Milan Hanson, bug re
porting data base, Mark Hodapp, extended memory intrin-
sics, Karl Jensen, program loading, Ken Martin, IMAGE
data base management system, and Peter Notess, terminal

and integrated CRT and keyboard drivers.
We would also like to thank Jack Cooley for managing

the C compiler and system performance characterization
efforts. Dave Graham from HP's Data Systems Division
(DSD) managed the FORTRAN and Pascal compiler efforts,
Ken Heun managed the initial HP-UX kernel effort, Jim
Willits and Vince Jones from CNO managed the local area
network and datacomm efforts, Mike Kolesar managed the
systems integration and release process, Eileen McGinnis
from DSD managed the AGP/DGL graphics effort, Denny
Georg and Dan Osecky managed the SUN kernel VM effort,
and Mike Hetrick managed the entire HP-UX program.

An Interactive Run-Time Compiler for
Enhanced BASIC Language Performance
by David M. Landers, T imothy W. T i l lson, Jack D. Cooley, and Richard R. Rupp

AT THE BEGINNING of the BASIC project for the HP
9000 Model 520 Computer, the project team was
faced with a major challenge. To take full advantage

of the performance available in the Model 520 from the
new 32-bit NMOS-III VLSI microprocessor,1 BASIC had to
be implemented as a compiled language. Using traditional
compiler technology, this would mean giving up many of
the interactive features so popular with current HP 9845
users. The challenge was to develop a new compiler tech
nology that would support these interactive features while
maintaining the performance advantage of a compiler.

The breakthrough came in the form of two articles on
"throwaway compiling," explained in two articles â€” one
by P.J. Brown2 and one by J. Hammond.3 The throwaway
or run-time compiling technique compiles each line the
first time it is executed. As more of the program is compiled,
the performance approaches that of a traditional compiled
system. If the program runs out of memory, the current
object code is discarded (hence the term "throwaway com
piling") and the incremental compilation is restarted at the
next line to be executed.

The authors were looking for a way to run programs
efficiently on machines with limited memory space, but
the throwaway compiling technique looked like it could
be adapted for a run-time compiler that would provide the
desired interactive features. If the object code could be
thrown away during the execution of a program and rebuilt
without restarting, it could also be thrown away at arbitrary
times such as when the user modifies the program. Within
limits, the program reconstructed after throwaway could
be different from the program before throwaway. This

would support the pause, edit, and continue feature. Given
that an intermediate form of the program is available to
reconstruct the object code at run time, this intermediate
code could be designed to contain enough information to
support the interactive debugging features. Finally, if the
object code could be constructed one line at a time and
added to the object code at run time, the code for a single
line could be constructed and immediately executed as
well. This would allow asynchronous execution of single
lines from the keyboard during program execution.

Enhanced BASIC Language
The BASIC language that Brown implemented as part of

his research was a very minimal subset, whereas Model
520 BASIC is a substantial language with several significant
features beyond those supported by most other BASIC sys
tems. Could these more advanced features be implemented
in a run-time compiling environment? That was the ulti
mate challenge facing the design team. Some of the lan
guage features that presented the biggest challenge were:
â€¢ Subprograms similar to FORTRAN routines, but support

ing recursion. Both subroutine and function subpro
grams are supported.

â€¢ A COMMON statement similar to that used in FORTRAN.
Both blank and labeled COMMON are supported. EQUIVA
LENCE is not supported.

â€¢ ON conditions; a mechanism for handling asynchronous
interrupts within a BASIC program. The interrupt service
routines are part of the program, accessible via GOTO,
GOSUB or CALL statements. Normal program flow can be
altered at any line boundary in response to one of these

MARCH 1984 HEWLETT-PACKARD JOURNAL 15

© Copr. 1949-1998 Hewlett-Packard Co.

in terrupts . Examples of possible in terrupts include
keyboard keystrokes, interrupts from I/O devices, soft
ware signals, and real-time clock events.

â€¢ Structured programming constructs such as IFATHEN/
ELSE, WHILE and REPEAT loops, and CASE.

â€¢ A REDIM statement that can dynamically change array
bounds.

â€¢ Dynamic variable allocation/deallocation via the ALLO
CATE and DEALLOCATE statements.

User Code Structure
The internal representation and management of the

user's program in the Model 520 BASIC system provides
insight into a complex and fascinating software architec
ture. This representation is called the program chain, which
is a collection of contexts, each of which represents a
user-level subprogram. A context can either be compiled,
or in a form from which the original source code can be
reconstructed, called intermediate code (icode). Compiled
contexts are created using the COMPILE command (not to
be confused with the code compiled by the incremental
run-time compiler), and are discussed in greater detail
below. The icode contexts can be listed and modified at
the source level by the user; the name comes from the fact
that the source is represented internally in a form that is
midway between source and object code. The icode con
texts also contain the incrementally compiled object code
produced by the run-time compiler as the program runs.
Intermediate Code Contexts. An intermediate code context
consists of two machine data segments: the icode segment
and the symbol table segment (see Fig. 1).

The context header holds information that describes the
context and its relationship to the other contexts in the
program. Also in the context header is a pointer to the
corresponding symbol table segment and to the next and
previous contexts in the program chain. The static object
code contains many small code sequences needed to sup
port running BASIC programs, including code to handle
ON conditions, end the program, handle input responses,
and other tasks. This static object code is always there, and
the incrementally compiled object code branches to it when
in need of some help for one of these tasks.
'The def ine should be aware that other ar t ic les in th is issue may def ine the term "context"
differently.

Icode Segment

Context Header
(Includes static

object code)

F o r m a l S c h e m a A r e a

Intermediate Code Area

Incremental ly Compiled
Statement Object Code

Free Space

Segment Transfer Table

Symbol Table Segment

Symbol Table Header

Symbol Table Area

Prerun Object Code

Free Space

Segment Transfer Table

Fig. 1 . The icode context contains two segments as shown.

The formal schema area holds a compact description of
the parameter list for this subprogram. It describes the
number and types of the parameters and is useful for sup
porting the call linkages. The icode area holds the represen
tation of the lines of the user's subprogram. Each line of
source corresponds to one line of icode. Whenever the user
modifies the intermediate code, the object code gets thrown
away. The intermediate code can then grow or shrink with
out having to move the object code. The incrementally
compiled statement object code is the object code for the
statements in the context. As the program runs, the object
code builds up in this area. The segment is extended if
necessary to make room for more object code.

The free space contains all the unused space in each
segment; all the other areas are directly adjacent. The object
code for a keyboard command goes into this area. Since a
command is a one-time event, and not part of the program,
the object code for that command disappears after the com
mand is executed. If there is not enough empty space to
hold the command's object code, the segment is increased
to make room.

The segment transfer table holds the pointers to proce
dures for calls into and out of a segment. During incremen
tal run-time compilation, this table grows and may cause
a segment extension.

The symbol table header contains a pointer to the icode
segment, the total size of the symbol table segment, and
lengths of items in the symbol table. The symbol table area
contains a series of entries, one for each identifier in the
context. There are fields in the entry for the storage organi
zation of the identifier (e.g., COMMON and ALLOCATED], the
identifier representation such as DOUBLE or REAL, the
number of dimensions (if an array), the type of identifier
(label, numeric variable, subprogram, etc.), the offset into
the value area of its definition, and the characters of the
identifier name. If this area has to grow because the user
enters new identifiers, it moves the prerun object code
down, extending the segment if necessary.

The prerun object code allocates space for the local vari
ables of the context, and it also initializes any bounds that
these variables need. This object code does not correspond
to any program statement; it just sets up the variables that
the statement object code will use. In BASIC, variables do
not have to be declared explicitly; new variables can be
defined by keyboard operations or even by modifying an
executing program. This run-time implicit variable alloca
tion can cause the prerun object code to grow so that the
new variables can be initialized at the next activation of
this context.

The double segment approach facilitates the manage
ment of all the dynamic edges. All areas except for the two
headers must be able to grow. The icode area and the sym
bol table area must grow at the same time during parsing.
The statement object code area and the prerun object code
area must grow simultaneously during program execution.
Compiled Code Contexts. The user can compile any context
currently in memory by using the COMPILE command and
store the object code in a PROG format file. Two benefits
accrue from the fact that compiled contexts contain no
intermediate code. They require less memory when loaded,
and it becomes possible to release programs without releas-

16 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

Context Header
(Includes static

object code)

Parameter List
Descriptor

Source Text of Original
Context Header

Compiled Statement
Object Code

Prerun Object Code

Free Space

Segment Transfer Table

Fig . 2 . Mach ine da ta segment fo r compi led code contex t .

ing their source. Compiled and icode contexts can coexist
in the same program. In this case the icode subprograms
list normally, while the compiled ones list the source of
their original context header. These lines begin with
>Â»Â» to indicate that the subprogram code is compiled.

Since compiled contexts have fewer dynamic edges than
their intermediate code counterparts, they require only one
machine data segment (see Fig. 2).
Icode Format. Each context contains a block of inter
mediate code that directly represents the source text of the
original subprogram. There is one line of icode for each
line in the source. A line of icode contains a header, fol
lowed by a series of tokens that represent keywords,
operators, constants, and symbol table entries. These to
kens are of varying length and are generally in the same
order as the elements they represent in the original source,
except for expressions, which are in reverse Polish notation
(RPN). The first byte of each icode token describes what
type of entry it is and how many bytes the entry takes.

The combination of RPN for expressions and source order
for everything else in the intermediate code may seem
strange. Since the Model 520's CPU uses a stack architec
ture, RPN makes it easy for the compiler to generate optimal
code for expressions. On the other hand, source order
simplifies listing and nonexpression code generation, be
cause the compiler can know what kind of statement it is
dealing with at the beginning of the icode line.

A line of icode is simply a series of bytes from 11 to 255
bytes long. There are length fields in each line to allow the
system to traverse the lines of icode either forwards or
backwards. This last capability is useful when scrolling
backwards in the editor. The system generally refers to a
line of icode by specifying its offset in the icode area.

The objective in the design of the intermediate code was
to minimize the memory space it requires. Most program
elements need just a single-byte entry to represent them.
For numeric constants, studies have shown that most con
stants are small integers. Thus, for integer constants in the
range 0 to 9, single-byte icode entries are used. For the
somewhat larger constants (up to 255), two-byte entries are
used. Constants greater than 255 require five-byte entries.
Floating-point constants are represented as character
strings. Most real constants such as 5.3 only have a few

characters, so storing them as characters takes fewer bytes
of storage than if they were stored as an eight-byte real
value. Keywords are arranged so that the most common
ones have a single-byte icode representation. All other en
tries take either two or three bytes.

Symbol table entires have two possible forms. In BASIC
programs, commonly referenced identifiers tend to have
single-letter names such as I, J. and N, and represent
numeric variables. Ten special locations are reserved in
the symbol table for this type of identifier, and a special
single-byte icode entry exists to represent them. All other
identifiers need a two-byte icode entry. If there are more
than ten single-character numeric variables, the first ten
will use the single-byte representation, and the rest will
use the two-byte representation. All nonnumeric iden
tifiers, such as strings, labels, functions, and subprograms
always use a two-byte icode representation.

Two examples of icode program lines for two typical
BASIC statements are shown in Fig. 3.

Fundamental Mechanisms
The run-time compiler is an incremental compiler. That

is, the program is compiled one piece at a time. In this case
the unit of compilation is a BASIC program line and each
line is compiled the first time it is executed. The simple
program listed in Fig. 4a illustrates the fundamental
mechanisms of the run-time compiler. As a programmer
enters a program, it is translated from the BASIC source
code to an intermediate code representation as discussed
earlier. When the programmer presses the RUN key to exe
cute the program, the system detects that the first line of
the program is not yet compiled, so a bootstrap code se
quence is emitted to invoke the compiler to compile the
first line (Fig. 4b) and control is passed to it. Line 10 is
then compiled and the compiler checks to see if the next
line, line 20, has been compiled yet. It has not, so a code
sequence to invoke the compiler for line 20 is appended
to the end of the code for line 10.

This new code overlays the initial bootstrap sequence,
which is no longer needed (Fig. 4c), and control is trans
ferred to the code for line 10, which is executed and then

Original BASIC Line:

1000
Icode:

P R I N T R E V S (A S & B S) , A t P I

2 3 2 O 2 5 O 2 8 1 6 0 2 4 6 1 6 1 7 0 1 4 0 1 8 0 1 5 1
W
B $

W I
R E V S O , PI

Original BASIC Line:

1 0 1 0 F i n i s h : E N D

I c o d e :

! e n d

 I /
1010 Len

0 1 9 2 4 0 3 1 2 4 6 1 0 5 2 5 4 7 2 2 3 2 1 0 1 1 1 0 1 0 0
 / I - * c o m m e n t -

0 3 2 4 2 3 2 2 1 2 2 1 5
I / W

C o l F i n i s h
S t a t u s P o s < l a b e l >
(l a b e l P r i o r O c o d e
h e r e) L e n O f f s e t

(compiled)

F i g . 3 . T w o e x a m p l e s o f i c o d e r e p r e s e n t a t i o n s o f B A S I C
program l ines.

M A R C H 1 9 8 4 H E W L E T T - P A C K A R D J O U R N A L 1 7

© Copr. 1949-1998 Hewlett-Packard Co.

(a) Example BASIC program

1 0 P R I N T " T a b l e o f S q u a r e s a n d S q u a r e R o o t s "
2 0 l = 1
3 0 I F I 1 0 0 T H E N D o n e
4 0 P R I N T I , | A 2 , S Q R (I)
50 I = 1 + 1
6 0 G O T O 3 0
7 0 D o n e : E N D

(b) RUN command bootstraps to begin execution

call compiler(10)

(c) Line 10 compiled

code for l ine 10
call compiler(20)

(d) Line 10 executed and l ine 20 compiled

code for l ine 10
code for l ine 20

''call compiler(30)

(e) Line 20 executed and l ine 30 compiled

code for l ine 10
code for l ine 20
code for l ine 30

test for I > 100
true: call compiler(70)
false: call compiler(40)

(f) Line 30 executed (test was false) and l ine 40 compiled
code for l ine 10
code for l ine 20
code for l ine 30

test for I > 100
true: call compiler(70)
false: code for l ine 40

call compiler(SO)

(g) Line 40 executed and l ine 50 compiled

code for l ine 10
code for l ine 20
code for l ine 30

test for I > 100
true: call compiler(70)
false: code for l ine 40

code for l ine 50
call compiler(60)

(h) Line 50 executed and l ine 60 compiled

code for l ine 10
code for l ine 20
code for l ine 30

test for I > 100
true: call compiler(70)
false: code for l ine 40

code for l ine 50
branch to code for l ine 30

(i) Line 30 executed (test was true) and l ine 70 compiled

code for l ine 10
code for l ine 20
code for l ine 30

test for I > 100
true: branch to code for l ine 70
false: code for l ine 40

code for l ine 50
branch to code for l ine 30
code for l ine 70
end program

Fig. 4. Example of run-time compiling. See text for explanation.

follows through to invoke the compiler for line 20. Simi
larly, line 20 is compiled (Fig. 4d) and executed and the
compiler is called to compile line 30. After line 30 is exe
cuted, there are two different lines that may be executed
next, depending on the results of the IF test. Therefore, the
compiler emits code to invoke itself for both lines 40 and
70, and the IF test will branch to one piece of code or the
other (Fig. 4e). Because the initial value of I is 1, the test
is false the first time line 30 is executed, so the compiler
is called to compile line 40. Lines 40 and 50 are compiled
and executed (Figs. 4f and 4g) and the compiler is then
invoked to compile line 60.

Line 60 is an unconditional transfer of control to line
30, which the compiler realizes is already compiled. There
fore, a branch instruction to the code for line 30 is all that
is emitted for line 60 (Fig. 4h). The main loop in the program
is now entirely compiled, so the next 99 times through the
loop execute only compiled code, allowing the perfor
mance of the system to be essentially the same as the per
formance of a traditional compiled system.

Once the value of I reaches 101, the test in line 30 is
true, causing the compiler to be invoked to compile line
70. In this case, the code for line 70 cannot directly overlay
the call to the compiler, because doing so would overlay
code for other program lines. Instead, the code of line 70
is appended to the end of the rest of the compiled code
and the call to the compiler for line 70 is replaced with a
branch instruction to the code for line 70 (Fig. 4i). The
program then terminates, but the compiled code is still
present. If the user chooses to rerun the program, the RUN
command now finds that the first line is already compiled
and transfers control directly to it so that the second execu
tion of the program executes only compiled code.

Interactive Features
In traditional interpretive systems, special checks for

user interactions or tracing take place at the beginning of
each line. Checking one or more flags can be done with
just a few machine instructions, which require a very small
overhead compared to the overall execution of the interpre
ter. In a compiled environment even a few instructions can
consume a large percentage of the total execution time of
the program. The solution developed in cooperation with
the CPU microcode team was the start-of-line-check in
struction SOLC. This instruction is the first instruction of
every compiled BASIC line. It performs two important
tasks. One, it checks a word at the base of the stack for
zero versus nonzero. If one or more bits in the word have
been set, indicating that something special needs to occur,
a trap occurs and the system takes the appropriate action.
If the word is zero, execution proceeds to the next instruc
tion. Second, the SOLC instruction writes its own address
at a fixed location in the stack so that the system can always
find out which line is being executed.

A traditional interactive feature on HP desktop comput
ers has been the live keyboard. The user can evaluate ex
pressions, examine and modify program variables, and exe
cute BASIC statements from the keyboard while the pro
gram is running. When a Model 520 user presses the EXE
CUTE key after typing in a command, one of the bits in the
SOLC check word is set, causing a trap to occur at the next

18 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

SOLC instruction. The system then parses, compiles, and
executes the interactive command before returning control
to the program line that was interrupted.

Another traditional HP interactive debugging feature is
the ability to trace program flow by enabling the TRACE
mode. This causes a message to be displayed on each nonse
quential transfer of control, showing the source and desti
nation line numbers. When a Model 520 programmer ena
bles tracing, another bit in the SOLC check word is set
which causes a trap on every SOLC instruction. The system
can then determine whether or not the BASIC line cur
rently being executed is immediately after the previously
executed line, and display an appropriate message if it
is not.

Another important debugging capability is the ability to
trace the assignments to program variables. When the pro
grammer enables variable tracing, the system enters a mode
where a trap occurs on every store into a memory location.
The system can then determine if the location is the loca
tion of a program variable, and if so, display a message
with the new value of the variable and the line number of
the line that changed the variable.

Although enabling either or both of the tracing modes
slows down program execution speed significantly, the
program usually executes faster than the programmer can
follow it unless the trace messages are slowed down with
the TRACE WAIT statement, which causes a delay after every
trace message is displayed.

The occurrence of an asynchronous ON condition also
causes a bit to be set in the SOLC check word. When the
next SOLC instruction executes, a trap occurs and the sys
tem sets up a branch to the specified service routine if the
scope and priority conditions are satisfied. The system
transfers control to a piece of static object code at the begin
ning of a context, which in turn branches to the service
routine if it is already compiled, or to a bootstrap sequence
to invoke the compiler if it is not yet compiled. CALL or
GOSUB branches invoked by the ON condition return to the
point of interruption as directed by the static object code
after handling the ON condition.

Program Modif icat ion and Continuat ion
While debugging a program, a programmer often wants

to be able to make a fix to the program and resume execution
without having to start the program over. The run-time
compiler allows the Model 520 Computer to support this
capability with a compiled system. As an example, suppose
the author of the program in Fig. 4a decided during the
execution of the program to calculate the squares and
square roots for all integers up to 1000 instead of 100 as
in the original program. Suppose that the program was at
line 40 when the programmer entered the editor and
changed line 30 (Fig. 5a). The compiled code for the pro
gram is no longer valid, so it is thrown away. The system
remembers that the program is currently at line 40. When
the programmer continues the program, the system deter
mines that line 40 is not compiled and sets up a bootstrap
sequence for line 40 similar to the way in which the pro
gram first began execution with line 10 (Fig. 5bj. Line 40
is recompiled and executed, followed by line 50 and so
forth (Figs. 5c to 5g). The compiled code is rebuilt a line

at a time, just as it was constructed the first time.
There are some restrictions on what lines can be changed

while a program is running. Lines that have only partially
been executed cannot be modified or deleted. For example,
a line that invokes a multiline function or a subprogram
cannot be changed, or the function or subprogram would
lose the place it should return to. The SUB statement that
defines an active subprogram cannot be modified or deleted
until that subprogram returns to its caller. A similar restric
tion holds for variable allocation statements such as DIM
and COMMON statements in an active subprogram. These
lines that cannot be changed are called busy lines.

Even though a busy line cannot be changed, the compiled
code for it may still be invalidated by an allowed change
to the context containing the line. In the case of a line that
invoked a multiline function, it must be recompiled when
the function returns. It is clearly undesirable to have to
check on every return from a function or subprogram to
see if the return point is still compiled. Instead, when com
piled code for a busy line is discarded, the return address
in the execution stack is patched to point at an entry point

(a) Example BASIC program

1 0 P R I N T " T a b l e o f S q u a r e s a n d S q u a r e R o o t s "
2 0 I = 1
3 0 I F I 1 0 0 0 T H E N D o n e
4 0 P R I N T I . I ' 7 . S Q R I I)
50 I = 1 + 1
60 GOTO 30
7 0 D o n e i E N D

(b) CONTINUE command bootstraps to resume execution

(c) Line 40 compiled

code for l ine 40
call compiler(SO)

(d) Line 40 executed and l ine 50 recompiled

code for l ine 40
code for l ine 50
call compiler(60)

(e) Line 50 executed and l ine 60 recompiled

code for l ine 40
code for l ine 50
code for line(30)

(f) Line 30 recompiled

code for l ine 50
code for l ine 30

test for I > 1 000
true: call compiler(70)
false: branch to code for l ine 40

(g) Line 30 executed (test was true) and l ine 70 compiled

code for l ine 50
code for l ine 30

test f or I > 1000
true: branch to code for l ine 70
false: branch to code for l ine 40

code for l ine 70
end program

Fig. 5. Effect of interact ive program modif icat ion on run-t ime
compi lat ion process. See text for explanat ion.

M A R C H 1 9 8 4 H E W L E T T - P A C K A R D J O U R N A L 1 9

© Copr. 1949-1998 Hewlett-Packard Co.

Preserving Programming Investment

An impor tan t cons idera t ion th roughout the des ign o f BASIC
for the HP 9000 Model 520 Computer was upward compat ib i l i ty
with BASIC for the HP 9845 and HP 9000 Series 200 Computers.
Even though the Ser ies 200 appeared more than a year before
the Model 520, the two BASIC language systems were designed
concur rent ly . A compat ib i l i t y commi t tee composed o f members
f rom both design teams coordinated the two ef for ts. As a resul t ,
Model 520 BASIC is a nearly pure superset of Series 200 BASIC.
Thus, almost any Series 200 program can run without modification
on t he Mode l 520 . The mos t s i gn i f i can t change i s usua l l y f o r
d e v i c e s e l e c t c o d e s . T h e r e l a t i o n s h i p b e t w e e n H P 9 8 4 5 a n d
Mode l 520 BASIC i s more comp lex . Some fea tu res o f t he l an
guage were redefined to improve the consistency of the language
and to pave the way for future development. The most signif icant
changes a re in the I /O and g raph ics sub languages . S ince no t
a l l HP 9845 programs can run on a Model 520 Computer wi thout
modi f icat ion, a t ranslator program was wr i t ten to assist users in
por t ing valuable ex is t ing sof tware to the Model 520.

Exper ience to da te w i th t ranspor t ing HP 9835 and HP 9845
programs to the Model 520 has been quite good. Many programs
execute successful ly without modif icat ion, and most wi l l execute
correct ly af ter manual modi f icat ion of a few syntact ical ly inval id
l ines . In sp i te o f the success ra te o f por t ing p rograms w i thout
the t ranslator , use of the t ranslator program is recommended as
i nsu rance aga ins t some sub t l e seman t i c changes . The re i s a
smal l set of programs that do require great ef for t to port . These
programs conta in a s igni f icant number of device-dependent por
t ions or por t ions wr i t ten in assembly language. Inc luded in the
dev ice -dependen t se t a re p rograms tha t depend heav i l y on d i
r ec t l y add ress ing t he CRT d i sp l ay and on ce r t a i n uses o f i t s
v ideo enhancement opt ions.

There are three basic di f ference categor ies that the t ranslator
program handles. First is where the Model 520 supports identical
semantics, but by way of a di f ferent syntax. Second is where the
M o d e l 5 2 0 s u p p o r t s t h e s a m e s y n t a x , b u t a s s i g n s d i f f e r e n t
semant ics to i t . Th i rd is ne i ther o f the above. E lements o f th is
l a s t se t r ange f r om a s l i gh t change i n seman t i c s , wh i ch may
af fect program behavior on ly very in f requent ly , to features that
have no equivalent and require user understanding of the intent
o f the program to make the changes. The t rans lator recognizes
a lmost a l l o f these , f lags them, and g ives sugges t ions on how
to translate manual ly.

The best example of f irst category is the modulo operator MOD,
wh ich has been changed to MODULO in the Mode l 520 . Some
others can result in a single l ine expanding to mult iple l ines (see
MAT INPUT example below), but the semantics are still preserved.

The mos t pe rvas i ve examp le o f t he second ca tego ry i s t he
change from BCD to binary ar i thmetic. In this case the translator
i s s u e s d i a g n o s t i c s w h e n i t s e e s p o t e n t i a l p r o b l e m s s u c h a s
noninteger numbers in FOR loop bounds and step s izes, or re la
t ional equal i ty tests where exact equal i ty was possible with BCD
va lues, but w i l l not be wi th b inary va lues. A second example is
the change in precedence for some operators. For example, the
NOT opera tor has lower precedence on the Model 520 than on
the HP 9835 and HP 9845 Computers .

Translat ion Examples
In many cases , the changed precedence does no t a f fec t the

r e s u l t s o f c o m p u t a t i o n s . F o r e x a m p l e , t h e e x p r e s s i o n - A x B
means (- A) x B on the HP 9835 and HP 9845, but i t means -(AxB)
on the Mode l 520 . E i t he r i n te rp re ta t i on o f t he exp ress ion p ro
duces the same answer (w i th the rare except ion o f an over f low
i n a n t h e r e s u l t) . T h e r e a r e c a s e s , t h o u g h , w h e r e t h e

c h a n g e d p r e c e d e n c e d o e s m a t t e r . T h e e x p r e s s i o n - 3 M O D 2
y ie lds a va lue o f one on the HP 9835 and HP 9845 because i t
is (-3) MOD 2. The expression -3 MODULO 2 yields a value of - 1
on the Model 520, because it is interpreted - (3 MODULO 2). After
passing through the translator, the HP 9835 and HP 9845 expres
s ions appear as (-A)x B and (-3) MODULO 2 . The -A i s pa ren
thes ized unnecessar i ly , because o f s impl i fy ing assumpt ions in
the express ion parser . These s imp l i f y ing assumpt ions are con
servat ive â€” they may cause unnecessary parenthesizat ion, but
wi l l not omit any necessary parentheses.

When the t ranslator encounters the statement

2 0 F O R 1 = 1 T O 2 S T E P . 1

i t g ives the warning

F O R l o o p w i t h n o n - i n t e g e r b o u n d s o r s t e p s i z e m a y b e h a v e d i f f e r e n t l y d u e
to binary ar i thmet ic .

Mos t o f t he i t ems hand led by t he t r ans la to r cou ld be done
manual ly , though at the cost o f cons iderab le ted ium. For exam
p l e , i n p u t t i n g a n a r r a y c a n b e d o n e o n t h e H P 9 8 4 5 b y t h e
statement

1 0 0 M A T I N P U T A

The identical operation on a the Model 520 is accomplished by

100 INPUT A(Â«)

The HP 9845 also al lows the redimensioning of an array by an
INPUT statement, but the Model 520 does not. The statement

1 0 0 M A T I N P U T A (3 , 5)

translates to

1 0 0 R E D I M A (3 , 5)
1 0 1 I N P U T A (*)

Finally, consider an extreme case where the HP 9845 statement
1 0 0 I F X > 3 T H E N M A T I N P U T A (- N D I V M , - N M O D M)

is converted automat ical ly by the t ranslator to

1 0 0 I F X > 3 T H E N
1 0 1 R E D I M A ((- N) D I V M , (- N) M O D U L O M)
1 02 INPUT A(Â«)
1 0 3 E N D I F

I f adding new l ines creates dupl icate l ine numbers in the pro
gram source, the t rans lator issues a d iagnost ic , and correct ion
o f t h e t h e w i l l r e q u i r e u s e r i n t e r v e n t i o n a f t e r g e t t i n g t h e
t r a n s l a t e d s o u r c e . N o a t t e m p t i s m a d e t o r e n u m b e r e x i s t i n g
source l ines, s ince that would also require f inding and changing
any programming re ferences to the af fected l ine numbers.

O n e o f t h e m o s t c o m p l i c a t e d t r a n s l a t i o n e x a m p l e s c a n b e
found in the CAT statement. The HP 9845 statement

1 0 0 C A T T O A $ (*) , S k i p , N

translates to

100 CAT "rmsus" TO A$(*) ; SELECT "selector" ,SKIP Skip.COUNT N.NOHEADER

Note is every parameter after A$(Â«) in the or iginal statement is
optional. Furthermore, with the exception of the f inal port ion (,1),
each parameter is independent of al l the others, and in the str ing
selectormsus, either the selector or the :msus portion could appear
w i thout the o ther . In a l l cases the assoc ia ted parameter in the
t rans la t ion i s le f t ou t o r inc luded as necessary . The f ina l ,1 i s
what causes the NOHEADER port ion to appear in the translat ion.
If this portion is ,o, the NOHEADER portion does not appear. If the

20 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

f i na l po r t ion i s a va r iab le , a d iagnos t i c i s g iven to the user to
check the s ta tement for poss ib le manual changes.

Imp lemen ta t i on
The t ranslator implementat ion draws much f rom convent ional

compi ler technology. I t is dr iven by a recurs ive descent parser ,
wh ich in tu rn re l i es on a scanner to bu i ld l anguage tokens by
r e a d i n g t h e i n p u t s t a t e m e n t o n e c h a r a c t e r a t a l i m e . A t f i r s t
g lance , i t appears tha t t he t rans la to r wou ld requ i re comp le te
knowledge o f the HP 9835 and HP 9845 BASIC language gram
mar . A r i t hme t i c exp ress ions can occu r i n a l l so r t s o f s t range
p laces i n BASIC s ta temen ts , and eve ry one o f t hem mus t be
inspected for poss ib le changes.

The most s igni f icant s impl i fy ing assumpt ion is that each input
program is a syntact ica l ly va l id HP 9845 program as SAVEd by
the HP 9845's in terpreter . Thus, many statements may be t rans
lated with no knowledge of their grammar. Each BASIC statement
is t reated as a sequence of expressions (usual ly del imi ted by a
b lank or a comma) which can genera l ly be inspected and t rans
l a t e d p r o T h i s m e a n s t h a t i s o l a t e d k e y w o r d s a r e p r o
cessed as an express ion by themselves. Complex express ions
may cause recursive calls on the expression evaluator to evaluate
subexpressions such as parenthesized expressions, funct ion or
procedure parameters, e tc .

Of course, th ings are not qui te that s imple everywhere. Some
sta tements must be unders tood in greater deta i l . They are han
dled in typical (nontable-driven) recursive descent fashion. When
a keyword or expression type is detected at any level that requires
more de ta i led ana lys is , a hand l ing p rocedure i s ca l led , wh ich

may i tse l f invoke the express ion evaluator to handle the subex
press ions. To suppor t th is detec t ion and subsequent hand l ing,
the expression evaluator always returns the type of the expression
i t found and i t s s ta r t ing and end ing charac te r pos i t ions in the
source s tatement . Th is in format ion must be kept unt i l the s tate
ment i s comple te ly p rocessed, s ince some s ta tements requ i re
the rearrangement of many of their expressions. Which translated
express ion goes where depends on the type and /o r ex is tence
of cer ta in other expressions in the or ig inal s tatement. This k ind
of suppor t is requi red for s ta tements such as the CAT example
earlier.

In a l l cases the t ranslator t r ies to get by wi th the least under
s tanding necessary to t ranslate a g iven statement . Any pr imary
keyword tha t requ i res no spec ia l hand l ing i s p rocessed a t the
outermost level by cal l ing the expression evaluator successively
unt i l the end of the statement is reached.

The translator i tsel f is wri t ten in Model 520 BASIC. I t contains
abou t 4500 s ta tements , and was des igned , coded, and tes ted
by one person in ten weeks. There were two key factors in th is
s h o r t a c t i o n s p e r i o d . F i r s t , a l l r e q u i r e d t r a n s l a t o r a c t i o n s
were wel l def ined in advance. That is , the problem to be solved
was clearly stated. Second, the Model 520 provided an excel lent
in teract ive development /debugging envi ronment .

Acknowledgment
The he lp o f Te resa Wa l l , a s tuden t summer emp loyee , was

invaluable in co l lect ing and organiz ing the d i f ferences f rom HP
9845 BASIC.

â€¢Gerrie L Shults

in the static object code for the context that will set up the
compiler to recompile the busy line and resume execution
at the appropriate place in it.

Summary
Model 520 BASIC has the interactive friendliness of pre

vious interpretive systems with the execution performance
of a compiler. All of the interactive features of BASIC in
HP's earlier desktop systems are supported.

The extra overhead introduced by run-time compiling
accounts for less than 5% of the execution time of most
programs and it is less than 1% for many of them. The
compiling that takes place at run time is very fast since
syntax is checked as lines are entered and the intermediate
code produced is optimized for compiling.

For large programs, the intermediate code and object
code are each about the same size as the source. (This does
not include run-time support routines which are consid
ered part of the system.) Because of the ability to throw
away code when no more memory is available, a program
can run (slowly) in just slightly more memory than is re
quired for the intermediate code and variables. Further
more, the system provides the ability to produce and exe
cute compiled code without any associated intermediate
code by using the COMPILE command.

Acknowledgments
We would like to thank other team members for their

contributions to this project, which indeed was a team
effort, with major contributions coming from each team
member. Tom Lane contributed ideas and expertise in vir
tually all areas. He was personally responsible for most of

the human interface design and for the internal process
model. He also made major contributions to the definition
and implementation of the systems programming language
used to implement the system. David Wight was responsi
ble for the early development of the intermediate code
format, and later for design and implementation of the very
complex executive process. Karl Freund was responsible
for high-level mass storage support. He made major con
tributions to the design and implementation of program
and data I/O to mass storage, and to the support of multiple
disc formats within the single mass storage system. Gerrie
Shults was responsible for alternate language support and
for the MAT operations, as well as for the HP 9845 to Model
520 BASIC translator. Special thanks to the microcoders,
especially Jim Fiasconaro and Bill Kwinn, who made
changes and additions to the CPU instruction set to support
this compiler better. Special thanks also to those who de
veloped tools to support the development of this project.
Without these tools, successful development would have
been nearly impossible. The toolsmiths were Jeff Eastman,
Husni AlSayed, Mike Connor, Mike McCarthy, Alan Sil-
verstein, Dennis Georg, and Dan Osecky.

References
1. K.P. Burkhart, et al, "An 18-MHz, 32-Bit VLSI Microprocessor,"
Hewlett-Packard Journal, Vol. 34, no. 8, August 1983.
2. P.J. Brown, "Throw-away Compiling," Software Practice and
Experience, Vol. 6, no. 6, 1976, pp. 423-434.
3. J. Hammond, "BASIC â€” An Evaluation of Processing Methods
and a Study of Some Programs," Software Practice and Experience,
Vol. 7, no. 6, 1977, pp. 697-712.

MARCH 1984 HEWLETT-PACKARD JOURNAL 21

© Copr. 1949-1998 Hewlett-Packard Co.

A Local Area Network for the HP 9000
Series 500 Computers
by John J. Balza, H. Michael Wenzel , and James L. Wi l l i ts

HEWLETT-PACKARD'S Manufacturer's Productivity
Network (MPN) divides the computing applications
for a typical manufacturing company into four areas:

accounting, manufacturing, factory control, and computer-
aided design. Data is collected and stored in each area and
access is provided to users via combinations of computing
and networking. Data access by users in the same area is
required frequently and to other areas more intermittently.

In the computer-aided design area, scientific and en
gineering workstations are connected into clusters for re
source and information sharing. LAN 9000 provides the
capability to cluster HP 9000 Series 500 Computers on a
local area network. In the future, additional HP-UX work
stations such as the HP 9000 Series 200 Computers will
also be connected to this local area network.

Communication between the four MPN areas occurs over
a backbone network. The backbone may consist of various
forms of communication technology such as a local area
network, packet switching, and private branch exchange.
LAN 9000 can also serve as a backbone network connecting
HP computers from the other three MPN areas.

Defini t ion of LAN 9000
LAN 9000 is a product composed of both hardware and

software. Its structure follows the ISO (International Stan
dards Organization) OSI (open system interconnect) model,1
which divides network functionality into seven layers (see
Fig. 1). In the LAN 9000 implementation, the physical and
link layers are accomplished in hardware, and the remain
ing upper layers are implemented in HP 9000 software.
The physical layer provides access to the physical com
munications media. The link layer defines the frame format
â€¢HP-UX is HP's implementation of the UNIX" operating system.

OSI
Levels

6-7
(Presentation

and
Application)

4-5
(Transport)

3
(Internet)

1-2
(Link and
Physical)

Interprocess
Communicat ion and

Remote Process
Management

R e m o t e N e t w o r k
F i l e A c c e s s I F i l e T r a n s f e r

Transmission
Control Protocol

Internet
Protocol

Backplane

and the protocol for error detection. The internet layer
provides the protocol for connecting multiple networks,
multiplexing, and data segmentation and reassembly. The
transport layer provides end-to-end reliability, multiplex
ing and flow control. The session layer provides a common
interface to the transport for the applications. The presen
tation and application layers provide data translation and
the actual network services visible to the user.
Hardware. The LAN 9000 hardware implements the phys
ical and link layers for the Ethernet local area network
specification.2'3 The hardware consists of an HP-IB (IEEE
488) interface card connected to an Ethernet interface unit,
which in turn is connected by twisted-pair branch cable
to the transceiver that taps the 50-ohm Ethernet coax cable
(see Fig. 2). Ethernet is a bus configuration where conten
tion between multiple stations is resolved by a technique
called carrier-sense multiple-access and collision detect
(CSMA/CD). The transceiver provides the driver electronics
for the cable, and the Ethernet interface unit provides ad
dress recognition, arbitration, and error detection. The
Ethernet specification supports 10M-bit/s performance for
up to 100 nodes on a 500-meter segment of Ethernet coax.
Each branch cable can be up to 50 meters long.
Software. The LAN 9000 software consists of the upper
layers of protocol and a supporting network architecture
(see Fig. 1), which will be discussed later. The transport
and internet levels were originally defined by the U.S. Defense
Advanced Research Projects Administration (DARPA)4'5
and are currently used in a large functional network called
ARPANET. The transport layer is called the transmission
control protocol (TCP) and the internet layer is called the
internet protocol (IP). The applications consist primarily
of three functions: the ability to access remote files, the
â€¢The and 9000 imp lementa t ion is a subset o f the DARPA pro toco ls and has no t been
tested for use on ARPANET.

Message
Manager

Host
) Operat ing

System

F ig . 1 . LAN 9000 so f twa re s t ruc
ture and i ts re la t ionship to the In
t e r n a t i o n a l S t a n d a r d s O r g a n i z a
t i o n o p e n s y s t e m i n t e r c o n n e c t
(OSI) model for computer network
functions.

Memory
Manager

22 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

ability to achieve high-speed transfer of files, and a lower-
level tool that enables users to initiate and communicate
with remote processes programmatically.

Accessing remote data is accomplished both by remote
file access (RFA) and network file transfer (NFT). RFA is
advantageous when accessing individual remote records
and when using existing programs that access files. The
method of access for RFA is a simple extension of the file
path name with a remote specifier. For example, the differ
ence in HP-UX commands between editing a local file and
a remote file on node george is:

Local : v i text f i le

Remote: vi /net/george/textf i le

NFT is advantageous when the high-speed movement of
a file from one system to another is desired. After transfer,
the new file can be accessed for processing. NFT achieves
about four times the throughput of RFA by using large
blocks and a pipelined transfer technique. The topology
for NFT is the three-node model, where the initiator, pro
ducer, and consumer can all be on different nodes. NFT is
accomplished with the dscopy command, which includes
the source and destination file path names as parameters.
File security is invoked for both RFA and NFT by the system
containing the file. Security is applied to remote access
consistent with the mechanisms used for local access.

Interprocess communication (IPC) and remote process
management (RPM) are lower-level tools that enable a user
to write custom distributed applications. They consist of
a number of procedures that can be called from the user
program. RPM gives the program the ability to create and
execute another program on a remote system and to termi
nate it. IPC consists of procedures to establish a communi
cation path, read and write data, and terminate the path.
The communication path is called a virtual circuit and
enables full-duplex communication between both process
es. The rendezvous between the two processes is achieved
through a name assignment by one process, a name lookup
by the other process, and then a handshake to establish
the virtual circuit. The IPC functionality was modeled after
the IPC specified in the 4.2BSD version of UNIXâ„¢ de
veloped by the University of California at Berkeley (UCB) .

Design of LAN 9000
Early in the project we knew that there would be several

major problems to be solved. It was our intention to select
an architecture so that as our networking needs changed,
the architecture would still support them. Several key prob
lems were recognized. First, we knew that we would be
UNIX is a U.S. t rademark of Bel l Laborator ies.

â€¢Network Code

Fig. 3 . Layered iso la t ion of por tab le network code.

dealing with several operating systems as well as several
processor families. At the time we were considering at least
two different operating systems and processors, one of
which was the NMOS-III VLSI 32-bit system used in the
HP 9000 Series 500 Computers. We wanted to build soft
ware that could be used in any multitasking operating sys
tem with any processor family.

Second, we knew from experience that many protocols
would need to be implemented within this architecture.
While there are some industry standard protocols today,
work in this area is just beginning. To meet HP customer
needs in the future, we would have to support a variety
of protocols at each of the seven levels of the OSI model.
Even if we only implemented industry or international
standards, there would still be a multitude of protocols,
because many different physical configurations could be
used to construct a network. While our initial product was
only for local area networks, eventually we would need
remote connections and connections over public data
networks.

Third, the system had to be robust and integrated. There
were several computer scientists working on the original
product and over time many more would contribute to the
networking functionality. We needed to define an environ
ment where these designers could work independently and
still have the result appear to be one integrated product
that would be free of errors.

Because of these challenges, our first task was to define
what we eventually called our data communications im
plementation architecture. This architecture is a com
prehensive specification of module interfaces. As shown
in Fig. 3, these modules are successively layered in their
isolation from the host operating system. For efficiency
and portability, the network protocol modules assume a
very high-level execution environment that is tuned for
networking code. Similarly, the execution environment

(cont inued on page 25}

HP 9000
Series 500 Computer

Ethernet
Cable

/ M a x i m u m
/ L e n g t h : 5 0 0 i
 M a x i m u m

Nodes: 100

F i g . 2 . T h e h a r d w a r e d e s i g n o f
the LAN 9000 product implements
t h e E t h e r n e t l o c a l a r e a n e t w o r k
speci f icat ion as shown.

MARCH 1984 HEWLETT-PACKARD JOURNAL 23

© Copr. 1949-1998 Hewlett-Packard Co.

Data Communications for a 32-Bit Computer Workstation

by Vincent C. Jones

The HP 9000 Ser ies 500 Computers p lace heavy demands on
data communicat ions. Aside from the local networking capabi l i ty
provided by LAN 9000, there are numerous other needs, because
t h e r e a l w o r l d d o e s n o t c o n s i s t e x c l u s i v e l y o f H P c o m p u t e r s
runn ing HP ne twork ing so f tware . The range o f these needs i s
even w ide r t han no rma l , because o f t he p i vo ta l na tu re o f t he
Series 500 i tself . I t needs not only the communications capabil i ty
of a single-user workstation, but also those of a powerful multiuser
machine.

Single-user workstat ions, even those as powerfu l as the desk
top vers ion of the Ser ies 500, the Model 520, do not funct ion in
i so la t ion . E f fec t i ve p rob lem so lv ing o f ten requ i res synergy be
t w e e n T h i s r e s o u r c e s a n d t h e i n d i v i d u a l w o r k s t a t i o n s . T h i s
r e q u i r e s e a s y c o m m u n i c a t i o n b e t w e e n w o r k s t a t i o n a n d m a i n
f r a m e , r e l i i n t e r a c t i v e t e r m i n a l - o r i e n t e d a c c e s s a n d r e l i
ab le f i le t ransfer . A typ ica l app l ica t ion might requ i re the Model
520 to o f f l oad some compu ta t i on - in tens i ve tasks f rom a ma in
f rame, a l low ing the ma in f rame to p rov ide be t te r response to a
larger number of users.

In mul t iuser mode, the emphas is tends to be more a long the
l ine of resource sharing among the di f ferent users. The communi
cat ion l ink wi th other mainframes is a resource to be shared the
same as a l ine pr in ter or data base. The in teract ive l inkup f rom
the user 's terminal to mul t ip le mainf rames is not as important a
need as the abi l i ty to get requi red data to the user 's local main
f rame for process ing, to communicate wi th users on other main
frames, or to move programs and data to larger, more special ized
mainf rames for processing.

A s e c o n d d i m e n s i o n t o t h e m a t r i x o f d a t a c o m m u n i c a t i o n s
needs is the network environment in which the mainframes oper
ate. SNA (systems network architecture) and bisync are common
wi th IBM host computers whi le DecNetâ„¢ and UNIXâ„¢ predomi
nate on host computers made by Dig i ta l Equipment Corporat ion
(DEC). HP's DSN services are s imi lar ly tuned to take advantage
o f t h e a n d o f H P c o m p u t e r s , w h i l e B u r r o u g h s , U n i v a c , a n d
just about every other computer vendor offer their own networking
so lu t i ons . Un fo r t una te l y , t hey a re a l l i ncompa t i b l e , mak ing i t
necessary to implement a number o f so lu t ions whi le remain ing
hopeless ly incomplete . However , IBM is such a dominant force
in the mainframe market that virtually al l vendors offer connection
to IBM using emulat ion techniques. Indeed, IBM 2780/3780 RJE
(remote job entry) has become so prevalent among minicomputer
vendors that i t is considered a de facto communications standard
for rel iable f i le transfer even in non-IBM environments. Simi lar ly,
a lmos t eve ryone a l l ows e f fec t i ve on - l i ne access f rom "dumb"
asynchronous ASCII terminals.

Th is le ts us def ine a min imal set o f communicat ions ab i l i t ies
to al low eff icient use of the Series 500 in most computing environ
ments . Retu rn ing to the fundamenta l needs o f users , we need
in teract ive mainf rame access and re l iab le f i le t ransfer . An asyn
chronous ASCII terminal emulat ion with programmable data rate,
character size, pari ty, stop bits, end-of- l ine, start-of- l ine, prompt,
and other parameters can be conf igured to access v i r tua l ly any
compu te r t ha t can connec t t o ASCI I t e rm ina ls . By mak ing the
e m u l a t o r u s e r - m o d i f i a b l e (b y p r o v i d i n g s o u r c e c o d e o r o t h e r
t echn iques) , access can be ga ined t o any hos t t ha t suppo r t s
a s y n c h r o n o u s t e r m i n a l s . A d d i n g t h e c a p a b i l i t y t o d i v e r t h o s t
t ransmiss ion to a f i l e and use f i l e inpu t in p lace o f keys t rokes
UNIX is a U.S t rademark o f Be l l Laborator ies
DecNet is a U.S. t rademark of Dig i ta l Equipment Corporat ion

provides a simple, low-cost f i le t ransfer capabi l i ty. Where higher
data integrity is required, IBM 2780 RJE provides a synchronous,
error-control led l inking.

This leaves only interact ive IBM access to provide, more com
monly known as 3270 capabi l i ty . Asynchronous termina l emula
t ion can be used with black boxes known as protocol converters,
but typical ly these are useful only under l imited condit ions. Most
impor tan t , they a re no t a one- fo r -one rep lacement fo r an IBM
3270 d isp lay s ta t ion , wh ich requ i res users to memor ize mu l t i -
s t roke key sequences to access the myr iad key funct ions ava i l
ab le on ac tua l 3270 sys tems. However , where l im i ted o r occa
sional access is required, especial ly i f the user is also no longer
us ing " the real th ing," they can funct ion qui te wel l .

Un fo r tuna te l y , IBM 3270 does no t spec i f y a un ique access
means. Instead, i t is an entire family of products including cluster
cont ro l lers , d isp lay s ta t ions, pr in ters and in tegrated cont ro l ler /
d isp lay s ta t ions . For example , to meet var ied cus tomer needs
and keep up w i th techno logy advances , the re a re over twen ty
d i f ferent models of 3274 contro l lers (some are obsolete) . There
a re more than ten d i f f e ren t mode ls o f 3278 and 3279 d i sp lay
stat ions, any of which can be used with current 3274 control lers.
Desp i te the p le thora o f opt ions, however , there are rea l ly on ly
two approaches to 3270 emulat ion. The f irst (and unti l late 1982,
the only approach) is to emulate the ent ire cluster control ler and
at tached d isp lay s ta t ions us ing b isync or SNA protoco ls to con
nec t to the ma in f rame v ia a 370x f ron t end . Common ly ca l led
3 2 7 4 f o r t h i s a p p r o a c h i s p a r t i c u l a r l y a t t r a c t i v e f o r m u l
t iuser situations, where up to 32 users can simultaneously access
the mainframe through the emulator whi le requir ing only a single
l ink f rom the local computer to the IBM mainframe.

The second approach , p ioneered on the IBM Persona l Com
puter by Techn ica l Ana lys is Corporat ion (now Dig i ta l Communi
cat ions Associates, Inc.) , is to emulate only the display stat ion,
leaving the ex is t ing IBM c luster contro l ler in p lace and hooking
in to s ta coax pro toco l used between cont ro l le r and d isp lay s ta
t ions . Commonly ca l led 3278 emula t ion , th is approach is most
a t t rac t i ve when rep lac ing ind iv idua l d isp lay s ta t ions w i th com
p u t e r b e E i t h e r a p p r o a c h , h o w e v e r , c a n t y p i c a l l y b e
used in the major i ty of appl icat ions, a lbei t not a lways opt imal ly.
Th is work tha t the c r i t i ca l in te rconnec t ion needs o f most work
s ta t ion users can be met w i th jus t th ree ne twork ing p roduc ts :
f lexible asynchronous terminal emulat ion, s imple IBM 2780/3780
remote job entry emulation, and some form of IBM 3270 capability.

In add i t ion to these min imal requ i rements , o ther communica
t ion needs are common enough to demand spec i f i c reso lu t ion ,
part icular ly for ef f ic ient integrat ion into HP, DEC, and UNIX envi
ronments as wel l as IBM.

Implementat ions
T h e r e a r e p r o b a b l y a s m a n y w a y s t o d e v e l o p t h e r e q u i r e d

capabi l i t ies as there are opinions in what makes up an adequate
se t o f capab i l i t i es . We had cho ices rang ing f rom "o f fe r what ' s
a l ready ava i l ab le o f f t he she l f " t o "des ign , deve lop and bu i l d
from scratch." As wi l l be seen, we tr ied to select whatever would
provide a qual i ty product in the shortest t ime â€” typical ly taking
an ex is t ing product and modi fy ing i t as requi red.

The f i r s t communica t ions p roduc ts deve loped fo r the Ser ies
500 were two general-purpose asynchronous terminal emulators
with file transfer capabilities â€” one for BASIC and one for HP-UX.
Crucia l to both was provid ing enough f lex ib i l i ty to communicate

24 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

wi th v i r t ua l l y any compu te r t ha t uses ASCI I cha rac te rs on an
asynchronous l ine. This means not only support ing standard op
t i ons o r l i ne ra tes f rom 50 to 19 ,200 b i t s pe r second , 7 -b i t o r
8 - b i t o p t i o n s a n d v a r i o u s p a r i t i e s , b u t a l s o a l l o w i n g o p t i o n s
l ike def in ing what characters to use for new l ine and XONXOFF
host prompts before transmit t ing the next l ine, and l ine-or iented
modes comple te w i th s ta r t -o f - l i ne and end-o f - l i ne sequences .
A lso requ i red was the ab i l i t y to func t ion w i th ex is t ing pro toco l
converters for IBM 3270 and RJE.

The BASIC asynchronous te rmina l emula to r i s based on the
HP 9845 Computer 's h igh-speed terminal emulator , mainta in ing
the same human inter face so that users moving up f rom the HP
9845 would not have to learn a new emulator . The HP-UX asyn
chronous termina l emula tor (a term) is jus t the oppos i te , a new
des ign f rom the bot tom up. At the moment , the implementat ion
is only part of the total design. Several cr i t ical features al lowing
m o d u l a r e x t e n s i o n s a n d u s e r c u s t o m i z a t i o n c a n n o t b e i m
p lemen ted un t i l enhancemen ts t o HP-UX tha t w i l l pe rm i t one
process to re l iably react to two concurrent asynchronous inputs
are in p lace

Once we were conf ident our minimal needs were covered, we
could start looking at how to provide more speci f ic connect ions.
Primary cr i ter ia were t imel iness of the implementat ion and ut i l i ty
t o t he HP Th is l ed to t h ree ma in commun ica t i ons th rus ts : HP
connect ion v ia Ethernet, IBM connect ion v ia RJE, and UNIX con
nect ion via cu (cal l UNIX) and uucp (UNIX-to-UNIX copy).

As mentioned earl ier, IBM communications consist of two major
capabi l i t ies: 3270 interact ive access and remote job entry. While
efforts are underway to provide buil t- in 3270 capabil i ty, our init ial
e f f o r t wen t i n to f i l e t r ans fe r v i a RJE . A t t he beg inn ing o f t he
project, we had to select from a number of potent ial opt ions. For
example, d id we want to do just 2780/3780 RJE or d id we want
to take advantage o f the mul t iuser capab i l i t ies o f the HP 9000
Series 500 Computers and provide multi leaving RJE (MRJE)? Bell
Laborator ies ' System I I I UNIX, which we were bu i ld ing on, had
an MRJE capabil i ty (the send command). However, that capabil i ty
was bu i l t us ing a v i r tua l p ro toco l mach ine runn ing on the DEC
KMC-11 communicat ions card . In add i t ion , the System I I I pack
a g e w a s b a s e d o n t h e a s s u m p t i o n t h a t t h e o n l y u s e f o r R J E
wou ld be t o subm i t j ob s t r eams t o IBM and Un i vac hos t s , an
unacceptable restr ict ion in v iew of our desire to use RJE also to
exchange f i les wi th minicomputers.

Our so lu t ion was to t ry to take the best o f bo th approaches;
keep ing the conven ien t job submi t ta l fac i l i t y o f the Sys tem I I I
MRJE user in ter face (the send command) , but put t ing i t a top a
2780 /3780 RJE p rog ram (r2780) wh i ch cou ld a l so be used d i
rectly by the user i f only f i le transfer were required. Also required
were two uti l i ty programs: a trace f i l ter to convert card trace data
from the compressed binary form generated on-l ine to a readable
l is t ing, and a pr int output f i l ter to expand IBM carr iage contro ls
to HP-UX compat ible sequences. The HP-UX standard def in i t ion
for send is l ink- independent so that a l though the current Ser ies
500 imp lemen ta t i on i s 2780 /3780- l i nk -based , f u tu re enhance
ments such as MRJE or SNA l inks to IBM could be added without
affect ing the user interface.

Third on our l is t of required connect ions, af ter HP and IBM, is

DEC Interactive access is fairly easy on multiuser systems â€” the
aterm asychronous terminal emulator can be made tota l ly t rans
parent, a l lowing the user to take advantage of the ANSI compat i
bi l i ty mode offered on several HP terminals. The Model 520 work
station user is restr icted, however, to "dumb terminal" only. While
we consider the restr ict ion undesirable, we do not envision many
users in te res ted in ded ica t ing a 32-b i t works ta t ion to te rmina l
emulat ion for data ent ry and edi t ing. S imi lar ly , i t would be n ice
to hook in to DecNet for f i le access and data t ransfer , but again
pr ior i t ies have prevented immediate sat is fact ion. For now, RJE
suff ices for rel iable f i le transfer, even though it requires a second
te rmina l connect ion to the DEC mach ine to cont ro l tha t end o f
the connect ion.

Last on our l is t of required connect ions is UNIX. Since HP-UX
is based on UNIX, we fe l t i t v i ta l that we f i t in to the UNIX data
communicat ions environment. To s impl i fy reta in ing compat ib i l i ty
with evolving releases from both Bell Laboratories and the Univer
s i ty of Cal i fornia at Berkeley, we at tempted to take the standard
Sys tem I I I UNIX- to -UNIX u t i l i t i es and change them as l i t t le as
poss ib le . We star ted out wi th cu, uucp, and uux (UNIX- to-UNIX
execu te) . A l t hough ou r goa l was to l eave them in tac t , we d i s
covered signi f icant design changes were required. Most cr i t ical ,
o t h e r t h a n f i x i n g n u m e r o u s b u g s , w a s r e m o v i n g r e s t r i c t i o n s
based on the Bel l assumpt ion that a l l users would have source
code to modify. Because HP-UX does not include an AT&T source
l icense, features requ i r ing modi f ica t ion o f the source code are
not acceptab le un less that source code can be prov ided to the
user by HP (i .e., was designed and writ ten by HP, not Bel l Labs).
Since links, these utilities are based on asynchronous dial-up links,
smar t modems are normal ly used. Unfor tunate ly , each modem
manufacturer seems to use a di f ferent protocol to tel l i ts modem
how to d ia l a spec i f ic phone number . Our so lu t ion was to move
dialing out of the main program and put it into a separate program
modu le , wh ich i s ca l led f rom the ma in p rogram and wr i t ten by
the user (no source l icense required). Sample programs showing
h o w t o d i a l V e n T e l a n d R a c a l V a d i c m o d e m s a r e s u p p l i e d .
Similarly, in uux the l ist of programs that can be run from a remote
machine was moved f rom a data array ins ide the program to an
ex terna l f i le . V is ib le changes f rom the System I I I vers ion were
min imized. By reta in ing the or ig ina l funct ional i ty and in ter face,
standard UNIX uti l i t ies that use uucp sti l l work as expected, includ
ing remote mai l and the notes network.

Acknowledgments
L a r r y B r u n s d e v e l o p e d t h e B A S I C a s y n c h r o n o u s t e r m i n a l

emula tor , Chr is Fug i t t wro te the HP-UX asynchronous termina l
emu la to r , and Don Rosenbaum mod i f i ed the UNIX commun ica
t i on u t i l i t i es , i nc lud ing mov ing modem d ia l i ng ou t o f the ma in
program in to a separate module.

Con t inu ing ou r c lose work ing re la t i onsh ip w i th the I /O ca rd
deve lopers a t HP 's d iv i s ion in Rosev i l l e , Ca l i fo rn ia , R ick Dow
deve loped the r2780 p rogram a t For t Co l l i ns , Co lo rado , wh i le
Br ian Kre l le d id the I /O card f i rmware a t Rosev i l le . A long w i th
them, Larry Bruns d id the t race and pr in t format t ing f i l ters , and
then brought up the System I I I send command.

modules build on other environment modules and rely on
the services of the host system interface, which provides a
machine-independent operating system interface. The host
system interface code consists of small and partially port
able modules that perform whatever actions are necessary
to adapt the host machine's operating system for network
use. For the Series 500 operating system, called SUN (see

articles on pages 28, 34, and 38), many of the host system
interface functions are null, that is, straight passthroughs
to system intrinsics. Ultimately, the host system interface
modules could grow to constitute a small operating system
in themselves when less functionality is provided by the
host machine. Notice that only these modules call the host
operating system directly and, therefore, they contain the

MARCH 1984 HEWLETT-PACKARD JOURNAL 25

© Copr. 1949-1998 Hewlett-Packard Co.

Higher-Layer (Using) Protocols

â€¢ â€¢ â€¢ â€¢ â€¢

Protocol Building Block

7Ã]

â€” Endpoints (One per
data path)

Execution
Environment

Functional Port
(One per addressable

function)

Lower-Layer (Serving) Protocols

F i g . 4 . I n t e r f a c e s t o t h e p r o t o c o l b u i l d i n g b l o c k .

only nonportable network code.
Together, the execution environment and host system

interface modules provide multitasking with process syn
chronization, memory management and accounting, inter
task message and queue management, nodal management
(which controls and coordinates all the other modules in
the network subsystem), utilities for manipulating the
shared-memory protocol interface data structures, and a
library of miscellaneous utilities (like hashing routines*)
which are of general use for protocol modules.

Fig. 4 shows the logical organization of a protocol build
ing block. This block encapsulates the code for a given
protocol. The main function of the network implementa
tion architecture is to define the interfaces between a pro
tocol building block and the blocks above it (which use its
services), the blocks below it (on which it depends), and
the execution environment. The upper and lower interfaces
are represented by shared-memory data structures. The ac
tions that take place at each interface are represented by
specific message types.

The lower interface for a protocol building block consists
of one or more functional ports â€” usually one. A functional
port can be visualized as a terminal strip of female electrical
sockets. (The related OSI concept is called a service access
point.)

The upper interface to the protocol building block con
sists of an endpoint for each of the protocol's instances of
communication with a remote machine. An endpoint can
be visualized as a male plug that attaches to a specific
functional port of a higher (the using) protocol. (The OSI
endpoint term refers to the following concept: Each pro
tocol building block regards an endpoint just below it a
the end of a data path "wire" that will carry its data tr
peer protocol module in a specific remote machine.)

The protocol building blocks are "plugged" together by
nodal management for each instance of communication
with a remote machine as shown in Fig. 5. This chain of
protocol building blocks is referred to as a data path and
is represented as a linked list of endpoint data structures.
Data paths can join or branch to represent multiplexing or
alternate routing. Fig. 5 shows the data path that supports
an instance of network file transfer (NFT). All data and
control information related to moving a file between the
local and remote machines is carried by internal messages
flowing along this data path.

Note that in the current version of LAN 9000 there are

'Rout ines used to organize tab les for rap id search ing or look-up.

several alternative building blocks at the services level. In
the future, there will also be alternative modules at all the
other levels as well. The protocol building block structure
will allow nodal management to plug together any combi
nation of alternative modules that is appropriate for reach
ing a particular remote machine. For example, the endpoint
underneath the internet protocol could just as easily belong
to the X.25 protocol block, which would then be served
by an endpoint belonging to the LAPB (link access protocol,
balanced mode) I/O card. Also, the NFT protocol could be
supported by an entirely different set of transport protocols.
We have already used the nodal management capability to
replace protocol building blocks by arranging data paths
through alternative modules. During development, we used
alternate data paths to inject special test modules at various
points above or below the code being developed.

The architecture described above solved three primary
problems. It isolated us from the operating system and
processor set by providing a series of common function
calls which we could create in any operating system. It
defined a series of interfaces between protocol modules so
that we could mix and match many protocols. These inter
faces were based on proposals in the ANSI and ISO commit
tees. de these interfaces allowed various protocol de
signers to design with some degree of independence and
still be sure that the system would be an integrated package.

We were concerned at first that creating all these module
interfaces would cause performance problems, but that was
a price we were willing to pay for the flexibility the ar
chitecture would give us. In the end, we were pleasantly
surprised to find that with just a minimum of tuning, our
performance was as good as or better than many other
similar systems on the market. The code modularity and
the architecture increased the productivity of our design
group with no loss of performance.

Qual i ty Assurance
It has long been a policy at our facility that the engineer

who designed and implemented a module is responsible
for the quality of that module. Following this policy, the
designers wrote the test plans for their individual modules.
This included both black-box and white-box testing. Here,
black-box testing is based on the user manual or external
specification of the module. White-box testing is based on
knowing how the module was designed and stressing it at
its weak points. Designers were responsible for doing their
own white-box testing, and many also did their own black-
box testing. The exception was when the module was de
signed to be used by HP customers directly. At this point,
an independent tester was assigned to do the black-box
testing to give us an independent opinion on the usefulness
of the module.

The test plans formed the basis for determining when
we were finished testing. They were also used for schedul
ing this phase of the project. One of the best indicators of
when the quality of the product is high enough to ship to
customers has been "Did we complete the test plan?" This
is one reason the test plan is reviewed by the quality assur
ance department to ensure that it is rigorous and complete.
'The networks. standard interface protocol for packet switching networks. This standard con
s ists of three protocol layers that conform to the lower three levels of the OSI model

26 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

The other major indicator of quality is a measure of the
mean time to failure. This time is the machine time spent
stressing the code in new ways, plus a derated amount of
machine time spent running old test programs, divided by
the number of failures detected.

Since completing the test plan usually takes some time,
we used a completion estimate for scheduling this phase.
Each designer estimated the hours necessary to design each
of the tests in the test plan. We then calculated the amount
of time necessary to find and fix code and design errors
from our historical data. Finally, we allotted time for over
head and unanticipated activities. After completing these
estimates for each designer, we estimated that the test phase
would take about 15 weeks. Since the test plan was actually
completed in 16 weeks, we felt our estimate was quite
good. But at this point we still had not met our goal for
mean time to failure.

In the course of doing testing, we came upon a new test
method that we called triggers. Triggers is a method of
triggering asynchronous events to occur at particular times.
For example, if a routine asks for blocks of memory three
times in its execution, we can trigger the system to reject
the memory request at any of those three times. The trigger
mechanism allowed us to test most of the paths in our
code. It was this trigger mechanism that kept our measured
failure rate so high in the beginning. Even though most of
the events detected by the triggers were very improbable
in real life, we continued to test for them until the triggers
could not produce any more errors. Then we felt that we
had a very solid system and we finally met our mean time

to failure goal. This additional test time took another four
weeks, but we felt the added code quality was worth the
effort. Most of the problems we solved with this technique
would have been very difficult to find and correct once
the product was in a customer's hands.

Future Directions
The current version of LAN 9000 establishes the base to

grow into additional topologies. The evolution will be in
the directions of connectivity to more kinds of workstations
and systems, additional links and gateways, and inclusion
of more industry standard protocols. The architecture pro
vides the flexibility to add protocols, and it facilitates the
porting of the network software to other systems.

References
1. Reference Mode] of Open Systems Interconnection, Interna
tional Standards Organization, ISO/TC97/SC16, Draft Interna
tional Standard ISO/DIS/7498, 1982.
2. The Ethernet: A Loca] Area Network, Data Link Layer and
PhysicaJ Layer Specifications, Version 1.0, Xerox Corporation,
Digital Equipment Corporation, and Intel Corporation, September
1980.
3. R.M. Metcalf and D.R. Boggs, "Ethernet: Distributed Packet
Switching for Local Computer Networks," Communications of the
ACM, Vol. 19, no. 7, July 1976, pp. 395-404.
4. Postel, J. (ed.), Transmission Control Protocol â€” DARPA Inter
net Program Protocol Specification, RFC 793, USC/Information
Sciences Institute, September 1981.
5. Postel, J. (ed.), Internet Protocol â€” D AflPA Internet Program Pro
tocol Specification, RFC 791, USC/Information Sciences Institute,
September 1981.

User or Program

T
Fi le Access ^B F i le Transfer â€¢â€¢ Process Management I I P rocess Communica t ion

TCP Transport

Internet Protocol

NIU (LAN) Driver
I /O Card and Box

-[.A] L{Â¿]4Â¿]
Future Transport

4 f
Future Internet

Future X.25 Packet

Future LAPB
Driver and Card

Future IEEE 802
Driver and Card Fig . 5 . Example o f a network f i le

t ransfer data path formed by plug
ging appropr iate protocol bui ld ing
blocks together.

MARCH 1984 HEWLETT-PACKARD JOURNAL 27

© Copr. 1949-1998 Hewlett-Packard Co.

A General-Purpose Operating System
Kernel for a 32-Bit Computer System
by Dennis D. Georg, Benjamin D. Osecky, and Stephan D. Scheid

THE OPERATING SYSTEM KERNEL for the HP 9000
Series 500 Computers efficiently supports the real
time requirements of the extended BASIC language

environment as well as the multiuser requirements of
HP-UX. The kernel provides efficient support for multiple
processors, a process model that supports a large user pro
cess virtual address space, a virtual memory system that
supports both paged and segmented virtual memory, mem
ory and buffer management, and a device-independent file
system which has the capability of supporting multiple
directory formats. The main objective of this operating sys
tem kernel, called SUN, is to provide a clean interface
between the underlying hardware and the application-level
systems such as BASIC or HP-UX.

The SUN operating system can be separated into two
sets of major components, as follows:

I/O
Input/Output Switch
Device Driver Modules
Input/Output Primitives

Non-l/O
Process Manager
Memory Manager
Buffer Manager
Message Manager
Timer Manager
Trap Manager
Dispatcher
Nonvolatile Memory Manager
System Startup Manager

The I/O components of SUN are described on page 38.
The SUN operating system manages the allocation and

deallocation of hardware resources. Memory and proces
sors are the primary system resources. Other resources in
clude buffers, message queues, file directories, input/out
put channels, processors, and timers. The management of
these resources supports:
â€¢ The establishment of contexts (sets of code and data

addresses) for the execution of sequences of instructions
â€¢ The allocation of the processor to the execution of spe

cific sequences of instructions
â€¢ The dynamic allocation of resources required by the al

gorithms being executed.

Hardware and Operat ing Environment
The Series 500 hardware provides a stack-oriented envi

ronment for program execution.1 Segmentation and paging
are used to facilitate memory management. A simplified
diagram of the operating environment is shown in Fig. 1
on page 35.

There are two basic types of segments: code segments
and data segments. Code execution on a Series 500 CPU is
contained in one or more code segments and uses several

data segments. One data segment is used as an execution
stack segment and at least one other data segment is used
as a global data segment. Each CPU contains hardware
registers to define and bound the current code, stack, and
global data segments. Other segments, called external data
segments, can be accessed indirectly through pointers
stored in the stack and global data segments. External data
segments can be paged.

Information to manage the segments is kept in tables â€”
one system segment table and many user segment tables.
However, only one user segment table can be active on a
CPU at a given time. The system segment table and the
currently active user segment table define the address range
of the program running on a CPU at any time.

A device reference table contains an entry for each I/O
channel. This entry contains information to establish the
code segment and global data segment for the interrupt
service routine when the corresponding I/O device requests
service. Each CPU has an interrupt control stack which
serves as the execution stack for interrupt service routines
and for the system dispatcher.

The CPU hardware defines a task control block to de
scribe the state of a task. This block contains a pointer to
the user segment table for the task and to the task's stack
and global data segments. The CPU microcode uses four
words of memory for each CPU in the system. These CPU-
dedicated locations point to the current user segment table,
the currently executing task control block, and the interrupt
control stack for the CPU.

Contexts
For this discussion, a context is a set of related addresses

that define a scope of addressability, that is, limit the set
of code and/or data addresses that are accessible. The SUN
operating system supports program, process, and partition
contexts.
Program Context. The simplest context is a program, a set
of one or more procedures. Each procedure is a collection
of instructions, with a common entry name, which may or
may not be parameterized. Instructions that make up a
program are stored in code segments. A program may oc
cupy one or more code segments or several programs may
reside in one code segment. The address range (context)
of a program is the set of code segments that it occupies.

During program execution, procedure parameters and
local variables and an execution stack are stored in a special
data segment called the stack segment. Program variables
that are not local to program procedures or parameters to
those procedures can be stored in either the global data
segment or in arbitrary additional data segments called
external data segments. External data segments are only

28 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

allocated as a result of explicit requests and can be either
paged or unpaged.

The context of an executing program or process also in
cludes the current values of the hardware registers, which
define the current state of the hardware and the relative
state of the process. The hardware state of a process can
be established using information from the process' task
control block and stack segment.

While a program has a static context, a process is an
active element with a dynamic context. In SUN, a process
is defined to be a unique instance of a consecutively execut
ing program, and more than one process can share a pro
gram. The primary operational characteristic of a process
is that the progress of any process in the system, as it
executes its code body, is not guaranteed relative to the
progress of other processes in the system.
Process Context. The minimum context for a process con
sists of the program context, stack and global data segments,
and the current hardware state. Each process has its own
stack segment. Process contexts can be expanded by the
addition of an arbitrary number of external data segments.
They also can be dynamically varied by allowing the
executing program to switch global data segments dynam
ically, create and delete external data segments, or extend
or contract existing segments.
Partition Context. A partition is a set of processes that
share a common user segment table. This segment table
has entries for the code and data segments that are local
to the partition. Since the segment table entries contain
the base address locations of the allocated segments as well
as their current lengths, the segment table defines the seg
ments the partition can address.

Other than the availability of memory and segment table
space, there is no limit to the number of processes that can
e x i s t a i n a p a r t i t i o n . A l l p r o c e s s e s w i t h i n a
partition can share the same global data segment. This seg
ment represents the primary mechanism for sharing data
among a set of processes within a partition.

User partition contexts are created as a result of calls to
the START_PARTITION procedure. The procedure parameters
specify the information required to construct a partition
context as well as the context of the inital process that is
to be created and executed within the created partition
context. The execution of START_PARTITION allocates the
initial physical memory for the partition, initializes the
segment table for the partition, allocates the global data
segment for the partition, and establishes the context for
the initial process in the created partition. The initial pro
cess can request additional resources, or create additional
process contexts. Like any other process in the system, the
progress of the execution of the initial process in the created
partition depends on its priority relative to other processes
and the number of other processes in the system as a whole.

A partition is deleted when the last process in that par
tition terminates. The resources that make up the partition
are then returned to the appropriate pools of available re
sources.
System Partition Context. The system partition is a special
context defined by the system segment table. Segments
described by the system segment table are addressable at
all times. The union of the segments in the system segment

table and the current user segment table defines the context
of the machine at any time. The system segment table con
tains the system global data segment and other segments
that can be shared by all processes in all partitions because
of their global addressability.

Every process context is allocated from within a partition
context. There are two classes of processes: user partition
processes and system processes. The main distinction be
tween user and system processes is the addressability of
the stack for the process. The stack segments of system
processes are allocated from the system segment table and
are therefore always addressable. A system process can
establish addressability to any partition context by chang
ing its current user segment table, which together with the
system segment table, defines the current address space.
User processes cannot address any segments described in
any user segment table other than their own.

Process contexts can be deleted explicitly or implicitly.
A call to the SUN procedure PTERMINATE causes explicit
termination of the current process. Implicit deletion occurs
when the program being executed completes execution and
exits its initial procedure. Regardless of whether the dele
tion occurs explicitly or implicitly, the effect is the same.
The resources used to construct the process context are
returned to the system for reallocation.

Processes in the subsystems supported by SUN always
execute within the context of a partition. Process contexts
established in a partition context can be used to control
asynchronous events or devices, simplify the solution to
an otherwise more complex problem, provide execution
environments that have special characteristics such as
specialized trap handling procedures, or separate the
execution of subsystem-supplied code from that of code
developed by a user.

An example of a process set provided by a language
subsystem is the model developed by the BASIC language
subsystem for the HP 9000 Model 520 Computer, an inte
grated desktop workstation. Each BASIC partition has ac
cess to a system human interface process and separate run
and executive processes. The human interface process
manages access to devices such as the Model 520's
keyboard and CRT, which are controlled asynchronously
by the user interacting with the machine. The executive
process controls the state of the partition's run process, the
parsing of language and command statements, and the com
munications with the human interface process. The run
process performs the run-time compilation and execution
of BASIC programs written by a user.

Resource Al locat ion and Addressabi l i ty
In most cases, memory object resources are allocated

from the partition containing the process making the re
quest. For example, a request for the allocation of a data
segment by a process within a user partition context results
in the allocation of the segment from that partition's seg
ment table. However, processes executing within user con
texts also have an ability to allocate/deallocate memory
object resources from the system context explicitly. Pro
cesses executing within the context of one user partition
cannot directly allocate/deallocate resources within another
user partition context.

MARCH 1984 HEWLETT-PACKARD JOURNAL 29

© Copr. 1949-1998 Hewlett-Packard Co.

Parallel Development of Hardware and Software

O n e o f t h e e a r l i e s t g o a l s o f t h e M o d e l 5 2 0 C o m p u t e r (t h e
desktop version of the HP 9000 Series 500) project was to br ing
the comple ted sys tem to the marke tp lace as soon as poss ib le
a f t e r pa t t e rn o f t he ha rdware . The t r ad i t i ona l p ro jec t pa t t e rn
in which development of the sof tware takes p lace af ter the com
plet ion of the hardware was therefore inappropr iate.

To increase both the product iv i ty of the sof tware development
t e a m a t h e r e s u l t a n t q u a l i t y o f t h e f i n a l s y s t e m s o f t w a r e , a
h igh - l eve l l anguage was des igned to be used fo r a l l sys tems
programming. This language, ca l led MODCAL, is based on Pas
ca l , bu t inc ludes enhancements to a l low separa te compi la t ion
and to provide control led access to certain architectural features
of the HP 9000 Ser ies 500 Computers so that the temptat ion to
code i n assemb ly l anguage i s g rea t l y r educed . S ince t he l an
guage was used to implement the most fundamental parts of the
SUN operat ing sys tem, i t was des igned in such a way as to be
suppor t - f ree. No suppor t ing l ib rar ies and operat ing system are
inherent ly assumed to exist by the compi ler. The match between
the language and the underly ing archi tecture is further improved
by the add i t ion o f a good compi le r code opt imizer , resu l t ing in
even less temptat ion to resor t to assembly language.

Wi th th is s t ra tegy i t was poss ib le to develop most o f the sof t
w a r e m o d u l e s w h i c h m a k e u p t h e s y s t e m . A t t h e e n d o f t h e
pro jec t more than 96% of the system sof tware had been coded
in MODCAL. Th is percentage inc luded the resu l ts o f ex tens ive
tuning ef for ts in which modules found to be cr i t ical to the perfor
mance o f t he mach ine we re r ecoded i n Se r i es 500 assemb l y
language. This overal l stategy not only improved the product ivi ty
o f t he deve lopmen t t eam, bu t a l so resu l t ed i n a p roduc t w i t h
much better sof tware rel iabi l i ty and maintainabi l i ty .

Although it was possible to test higher-level modules by execut
ing them on another system with s imulated lower- level rout ines,
i t became apparen t tha t the on ly accep tab le way to check ou t
lower - leve l , a rch i tec tu ra l l y dependent so f tware was to run the
code in an env i ronment that fu l ly dupl icated the character is t ics
o f the f ina l system. This requi rement was espec ia l ly cr i t ica l for
test ing I /O dr iver code. Not only d id i t require the dupl icat ion of
the CPU and I /O processor funct ions, but a lso the semant ics of
an I /O device.

To a l low a l l par ts o f the sys tem to comple te tes t ing and in te
grat ion before the avai labi l i ty of funct ioning hardware, a detai led
sof tware emulator o f the Model 520 was bu i l t . Th is emula tor in
c ludes deta i led model ing o f a l l par ts o f the CPU,1 memory con
troller,2 and most significantly, the I/O processor3 and backplane.

The HP 9845 Computer, configured with an assembly language
development ROM, was selected as the engine for the emulator.
The f r iendl iness of the assembly language development environ
ment al lowed high product iv i ty during the emulator development.
The memory system of the HP 9845 was suf f ic ient ly large (500K
b y t e s) a n d t h e o v e r a l l s y s t e m c o s t w a s l o w e n o u g h t o a l l o w
several systems to be purchased for the emulat ion funct ion. The
last consideration was of extreme importance since the operation
o f the emulator is by necess i ty very computat ion- in tens ive and
one o r two cop ies o f the emu la to r execu t ing on a t imeshar ing
sys tem wou ld have comple te ly consumed the sys tem's p roces
s o r . F u r t h e r m o r e , t h e H P 9 8 4 5 w a s a l s o u s e d a s a M O D C A L
deve lopment s ta t ion , a l lowing a comple te deve lopment s ta t ion
to ex is t on an engineer 's desk.

The emulator was implemented in stages. The funct ional i ty of
t h e C P U s e t a n d a s u f f i c i e n t f r a c t i o n o f t h e i n s t r u c t i o n s e t
to a l low the lowest leve ls o f the opera t ing sys tem to be coded
and tested were provided f irst. This al lowed most of the operating

system kernel to be tested suf f ic ient ly to ready i t for integrat ion
with part ia l ly tested higher- level sof tware. Work on the emulator
then cont inued to implement the instruct ion set more completely
by including floating-point instructions and all instructions emitted
by the MODCAL compi le r . Most o f the BASIC so f tware sys tem
could be tested with the exception of the I/O drivers, f i le system,
and human interface. A temporary I /O interface was added which
a l lowed s imple read and pr int I /O to take p lace to the keyboard
and d isp lay of the HP 9845.

Nex t , t he comp le te I /O p rocessor and I /O backp lane emu la
t ions were added. This consisted of sof tware to model the state
of the I /O processor connected to an external dev ice which pro
v ided the hardware s imula t ion o f the new I /O backp lane o f the
Mode l 520 . S imu la t i on o f I /O dev ice semant i cs cou ld then be
prov ided by ac tua l I /O dev ices . Th is approach worked we l l fo r
devices that were avai lable for use, but a number of I /O devices
we re s t i l l unde r deve lopmen t . A capab i l i t y was added tha t a l
lowed sof tware s imulat ion of these unavai lable devices.

Code was added to the emulator to capture dynamic measures
o f i n s t r u c t i o n a n d m e m o r y a c c e s s m o d e u s e . T h e e x e c u t i o n
moni tor funct ion suppor ted by these add i t ions a l lowed the sof t
ware deve lopment team to eva luate cod ing a l te rnat ives and to
beg in t un ing t he sys tem be fo re ha rdware was ava i l ab le . The
funct ional i ty o f the emulator was tested dur ing i ts development
by a ba t te r y o f a r ch i t ec tu ra l ve r i f i ca t i on t es t s wh i ch we re de
veloped in paral lel with the emulator. These tests not only served
as a c ross check on the cor rec tness o f the emula to r , bu t they
were when used as verif ication tests for the NMOS-III chips when
prel iminary vers ions became avai lable.

The f in ished emulator a l lowed complete integrat ion of a l l com
ponents of the Model 520's BASIC system, inc luding the human
interface and I/O drivers. The execution rate of the software was
1000 t imes s lower t han rea l t ime , bu t was su f f i c i en t t o a l l ow
BASIC s ta tements to be s tored a t the ra te o f one every 20 sec
onds. At this point some of the software modules were suff iciently
stable to al low the start of qual i ty assurance test ing.

Final ly the hardware was ready. The 350K-byte BASIC operat
ing sys tem was loaded in to the p ro to type and the sys tem was
funct ional . The paral le l development st rategy was successfu l .

Acknowledgments
T h e p a r a l l e l d e v e l o p m e n t s t r a t e g y w a s m a d e p o s s i b l e b e

c a u s e o f t h e e f f o r t s o f M a r c e l M e i e r a n d B r u c e R o d e a n w h o
cons t ruc ted the ba t te ry o f a rch i tec tu ra l ve r i f i ca t ion tes ts and
he lped debug the I /O sys tem, Er ic Ne lson and Cra ig Rob inson
who p rov ided the HP-9845 -bus - to -HP-9000 -bus adap te r , Je f f
Eastman, Roger Ison, Scott Wang, Kar l Jensen, Mike McCarthy,
T im T i l l son , Tom Lane, Mike Connor , and o thers who prov ided
the MODCAL development envi ronment, and Bi l l Eads and Mike
Kolesar who prov ided a suppor t ive management env i ronment .

References
1. K.P. Hewlett-Packard et at. "An 18-MHz, 32-Bit VLSI Microprocessor," Hewlett-Packard
Journal , Vol . 34, no 8, August 1 983.
2. C,G. Lob, e t a l , "High-Per formance VLSI Memory System," ib id .
3. F.J. Computer W.S. Jafle, and D.R. Weiss. "VLSI I/O Processor for a 32-Bit Computer
System," ibid.

-Ben jamin D. Osecky
-Dennis D. Georg

30 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

Other types of objects can be allocated by calls to the
operating system. Buffers are contiguous sections of mem
ory that are guaranteed never to be relocated and can there
fore be referenced by using absolute addresses. Buffers are
mainly used by the I/O part of SUN as temporary holders
of data being transferred either to or from an I/O device.

A message link is a queue receptacle to which messages
can be sent and from which messages can be received.
Message links are allocated by SUN from a segment that
exists in the context of the system partition.

Resources allocated from the system partition have global
addressability since all partitions see the system address
space as part of their address space. Resources allocated
in partitions other than the system partition cannot be ad
dressed from other user partitions. The ability to address
user partitions is provided to system processes via the pro
cedure CHANGE_TO_PARTITION, which establishes user ac
cess to the specified partition.

Virtual Memory
The operating system provides support for virtual mem

ory used in HP-UX in the form of both segmentation and
paging. Virtual segments are treated as indivisible entities
of variable length that can be swapped to a storage device
when not in use. Virtual objects can also be allocated in
paged external data segments which are divided into equal
pieces called pages. Each page can reside in physical mem
ory independent of the other pages that make up the object.
Virtual segmented objects can be up to 500K bytes in size,
while virtual paged objects can be up to 500M bytes.

The hardware provides indicators for each virtual object,
allowing the operating system to determine if the object is
currently in physical memory, and if it is, to determine
whether the object has been referenced and/or modified.
The operating system uses this information in its replace
ment algorithms to choose segments or pages to be removed
from physical memory when necessary.

The operating system supports the sharing of virtual ob
jects among several processes. It also supports the mapping
of files into virtual objects, thus providing access to a mapped
file at memory speeds. Virtual objects can also be locked
in physical memory to prevent relocation during I/O trans
fers to or from the object.

Communicat ions
SUN and the language and applications subsystems sup

ported by it are sets of communicating processes. The initial
process within the user context is free to develop an arbi
trary set of processes. No structure is imposed on the pro
cess set within user partition contexts. However, all pro
cesses within a partition context share a global data seg
ment and other segments that they can commonly address.

The simplest form of communication occurs at process
creation when a single-segment relative pointer is passed
as a parameter to the program to be executed in the new
process context. This pointer can have no value or can
point to an arbitrary parameter structure. This level of com
munication is similar to the parameter passing that occurs
when one procedure calls another procedure within the
same process context.

Processes executing within the same partition context

can share data in the global data segment or other external
data segments defined in their common segment table. All
processes can share data in segments defined in the system
segment table. Pointers to shared data or the shared data
itself are stored in global data segments that are common
to the communicating processes.

In addition to supporting communication via inter
process parameter passing and shared data in global data
segments, SUN supports communication via message pass
ing. This support is provided by the message manager com
ponent. The message manager supports interprocess global
communication by allowing one process to construct a
packet of information called a message, send that message
to a mailbox, and have a different process at an later time
receive the message from the same mailbox. Processes com
municating via messages can exist either in the same or
different partition contexts. All that is required to initiate
the communication is knowledge of a common message
mailbox name, which SUN refers to as a message link.

Synchronizat ion and Schedul ing
Semaphores and semaphore operations are used to syn

chronize and coordinate processes. A semaphore is im
plemented as a two-word data structure that can be allo
cated anywhere that can be commonly addressed by the
synchronizing processes. There is no limit on the number
of semaphores that can exist in the system. They are used
to protect and provide exclusive access to shared data and
to block a process until signaled by another process.

The semaphore operations are designed to be safe in a
multiple-processor environment. By safe, it is meant that
the operations on semaphore data objects are guaranteed
to be indivisible and complete regardless of the number of
processors in the system. A more complete description of
the operation of the process synchronization primitives
can be found in the article on page 34.

SUN also provides procedures for synchronizing pro
cesses with time. These procedures allow processes to wait
for a specified time interval or to wait until a specified
absolute time. Absolute times and intervals are specified
as floating-point numbers in units of microseconds.

At any time, all processes can be divided into two groups:
runable and blocked. In addition, a subset of the runable
processes is actually executing on the CPUs of the system.
In a system with n CPUs, up to n processes can be executing
at the same time. Processes become blocked by explicitly
downing a semaphore, attempting to receive a message
that has not yet arrived, or waiting on a timer.

The SUN operating system supports sets of subsystems
that, in general, have more processes to be run than proces
sors. The dispatcher provided by the operating system is
responsible for selecting runable processes to be executed
by the CPUs based on process priority. Entry to the dis
patcher occurs whenever a dispatch instruction (DISP) has
been executed and the current state of the system allows
the dispatcher to be entered. The DISP instruction is exe
cuted by process synchronization and manipulation primi
tives when the state of a process is modified. In particular,
the dispatcher is entered whenever a currently executing
process is blocked, when a process that is of higher priority
than a currently running process is made runable, or when

MARCH 1984 HEWLETT-PACKARD JOURNAL 31

© Copr. 1949-1998 Hewlett-Packard Co.

A System Software Debugger

For the VLSI chip set used in the HP 9000 Series 500 Comput
e rs , two ava i lab le leve ls o f debugg ing evo lved . The low- leve l
capab i l i t y uses a separa te HP 9845 runn ing a huge BASIC pro
gram, attached to another electronic tool, which in turn connects
to the NMOS-III CPU or I/O processor debug ports. The high-level
d e b u g g e r i s a l a r g e s o f t w a r e p a c k a g e t h a t i s l i n k e d w i t h a n
operat ing system. I t uses debugging support tools bui l t in to the
mic rocode to he lp p rogrammers debug tha t sys tem.

Major Features
The debugger suppor t s s tepp ing , b reak ing , and p ro f i l i ng a t

t h e p r o c e d u r e , s t a t e m e n t , a n d m a c h i n e i n s t r u c t i o n l e v e l s ,
exam ines and changes memory and I /O i n a va r i e t y o f ways ,
d isassembles machine ins t ruc t ions, dumps process s ta tus , pro
cedure cha ins , CPU reg is ters , s tacks , and var iab les , executes
procedures, pr in ts hard-copy audi t t ra i ls , and passes contro l to
user-def ined debugging sof tware.

The debugge r i s menu -d r i ven . Mos t command p romp ts a re
l ess i s one l i ne l ong . Each command i s a s ing le l e t t e r t ha t i s
accepted as soon as it is typed. Given the speed of the underlying
hardware , th is makes fo r a respons ive , na tu ra l - fee l ing human
in ter face which combines the best o f both menu and command
l i ne s t y l es . Nov i ces f i nd t he debugge r easy t o use f o r qu i ck ,
s imple in teract ions. Exper ienced users tend to learn shor t com
mand sequences tha t accompl ish common opera t ions .

The menus range in leng th f rom shor t (two op t ions) to qu i te
long (twelve options at the top level). Most functions are only two
o r t h ree l eve l s deep , and eve ry menu bu t t he t op one can be
exi ted by typing O (opt ions).

Mos t menu l ines a re c leared a f te r the user responds , wh ich
keeps the v isual c lu t ter to a min imum. When mul t ip le-character
i npu t i s requ i red , the debugger reques ts i t be tween menus in

as compact a form as poss ib le .
The first four options â€” Pstep, Step, Focus, and Resume â€” on the

top level resume the current process, e i ther s tepping at the pro
cedure , s ta tement , o r mach ine ins t ruc t ion leve ls , o r resuming
execut ion wi th no change of debug state. The Break opt ion sup
por ts maintenance of procedure, source s ta tement , machine in
s t ruc t ion , memory locat ion , and ex terna l p rocess breakpo in ts .
Machine instruct ion breakpoints can be local (one process only)
or global (al l processes). Clear sets the state of the debugger to
free-run.

The Exam opt ion leads to a powerfu l memory and I /O access
capability. For examining memory, it f irst allows the user to specify
the ini t ia l memory locat ion in one of a number of ways, ei ther as
an absolute address, re la t ive to var ious data reg is ters and seg
ments, or by variable name or program location. Then i t supports
f o r w a r d a n d b a c k w a r d s t e p p i n g t h r o u g h a n d j u m p i n g a r o u n d
memory , go ing i nd i rec t l y t h rough da ta and abso lu te po in te r s
(wi th a return stack) , modi fy ing locat ions, and v iewing arb i t rary
byte sequences. Meanwhi le, the Exam lo opt ion supports s imple
I /O requests and status displays.

The Dump option capabi l i t ies include task status, accumulated
CPU use by processes, procedure cal l ing chains, CPU registers,
and stack and var iable dumps. The eXec opt ion a l lows users to
ca l l any procedure in memory , w i th a spec i f ied parameter l i s t ,
under debugger con t ro l . The Togg le op t ion con t ro ls debugger
modes, inc lud ing par t ia l and fu l l hard-copy aud i t t ra i l p r in t ing .
The Meas opt ion in terac ts w i th the opt iona l p rocedure , source
s t a t e m e n t , a n d m a c h i n e i n s t r u c t i o n e x e c u t i o n a n d c o v e r a g e
monitor (profi ler).

Finally, the twelfth option, Ud, leads to a user-defined debugger,
i f one i s p resen t . So f tware au thors can eas i l y wr i te the i r own
extensions and plug them in at l ink t ime.

the priority of a currently running process is changed. This
ensures that the highest-priority process in the set of run-
able processes is selected for execution.

The dispatcher completes the state-saving operation in
itiated by the DISP instruction, selects the highest-priority
runable process, marks the selected process as running,
restores a subset of the hardware registers based on values
stored in the task control block associated with the selected
process, and executes an interrupt exit (IXIT) instruction.
The IXIT instruction causes the remainder of the hardware
state to be restored and process execution to resume.

Interrupt Handling
The normal flow of the execution of the machine instruc

tions can be modified by three mechanisms: external inter
rupts, internal interrupts, and traps. External interrupts
signal requests for service by I/O devices. Internal inter
rupts signal abnormal conditions within the system that
are not associated with the execution of a machine instruc
tion. Traps differ from interrupts in that traps result from
conditions detected by the hardware during the execution
of an instruction. The detailed handling of interrupts and
traps is done by the operating system.

The hardware defines 16 priority levels that can be as
signed to each I/O channel. The interrupt structure is such
that a higher-priority device preempts a lower-priority de

vice. Furthermore, a special hardware register, called the
mask register, can be used for the purpose of masking off
specific priority levels. The initial handling of external
interrupts is done by the CPU microcode interrupt handler.
The interrupt handler is executed on behalf of a particular
device when all of the following conditions are met: 1) the
device has requested an interrupt, 2) interrupts at the de
vice's priority level are not masked, 3) the interrupt bit in
the status register is enabled, and 4) no higher-priority
device is requesting service.

The interrupt handler initially saves the state of the
machine by pushing a stack marker onto the stack segment
for the currently executing process. The stack marker con
tains the information necessary to restore the status of the
interrupted process, and hence allow execution to resume
later. The information includes the index register value,
the address of the first instruction to be executed when the
machine status is restored, the machine status indication
register, and a pointer to the previous stack marker.

External interrupts are handled on a special stack seg
ment called the interrupt control stack. In this case, the
CPU registers are modified to point to different stack and
global data segments before the execution of the interrupt
service routine. Before this register modification, the values
of the registers associated with the interrupted process are
saved in the process' task control block and stack segment

32 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

T h e d e b u g g e r c o n t a i n s a c o m p l e t e u s e r I / O f a c i l i t y f o r
keyboard input and d isp lay and opt ional hard-copy output . L ike
m o s t p a r t s o f t h e d e b u g g e r , t h i s c o d e i s a s i n d e p e n d e n t a s
possib le of any par t icu lar operat ing system implementat ion.

Mos t o f the debugger I /O and mode-con t ro l rou t ines (abou t
34 in is are expor ted to the rest o f the system sof tware. This is
especial ly invaluable for debugging system I /O sof tware and for
support ing miscel laneous test harnesses.

The debugger inc ludes two op t iona l packages wh ich can be
included at l ink t ime. I f the disassembler is present, a l l d isplays
o f code a re d i sassemb led wh i l e examin ing , dump ing , o r s tep
ping. option the execution monitor (profiler) is present, the Meas option
comes a l ive, adding a number of features.

The debugger i s par t symbol ic . Compi le - t ime opt ions permi t
each procedure to be fol lowed by a short symbol table, including
a procedure name and poss ib ly var iab le names and loca t ions .
I f th is in format ion is present , the debugger uses i t wherever i t
can. Debugging of "nondebuggable" procedures is st i l l possible,
but procedure and var iable informat ion is entered and displayed
str ic t ly by numeric address.

Implementation
This debugger is Â¡ntraprocess, not interprocess. Rather than

o c c u p y i n g o n e o r m o r e d e d i c a t e d d e b u g g i n g p r o c e s s e s t h a t
interact with others, the debugger is inact ive unt i l invoked. I f the
debugger is present, every process has a smal l amount of space
(about 240 bytes) set aside at the base of i ts stack for permanent
debugger va r iab les . The debugger uses a lmos t no o the r da ta
storage.

When act ivated, the debugger runs on top of whatever process
invokes i t . To ensure a stable environment, i t turns off interrupts,
takes exclusive control of the machine (pausing al l other CPUs),
and is careful not to rel inquish that control unt i l exi ted.

T h e o p e r a t i n g s y s t e m s s u p p l y a l i m i t e d n u m b e r o f s p e c i a l
suppor t rout ines to help the debugger gather in format ion about
and con t ro l o the r p rocesses and ope ra t i ng sys tem da ta s t ruc
tu res . These rou t ines he lp i nsu la te the opera t ing sys tem and
debugger f rom each o ther , max imiz ing independence.

The VLSI ch ip m ic rocode p rov ides a handy se t o f debugger
support features. There are a number of special assembly instruc
t i ons the when enab led , cause so f tware t raps tha t lead to the
debugger (i f present) . These inst ruct ions are p lanted in debug-
gab le code by the compi le r and enab led by the debugger on a
p rocess- loca l bas is as needed fo r s imp le , e f f i c ien t p rocedure
and source s ta tement s tepp ing. S ince the s ta tus reg is ter does
the enab l ing /d i sab l i ng , the debugger s ta te becomes a pa r t o f
the p rocess s ta te . The CPU mic rocode a lso suppor ts mach ine
ins t ruc t ion s tepp ing and a s ing le abso lu te-address break reg is
ter , both o f which operate through the t rap mechanism.

The debugger is l inked wi th one of a number o f low- leve l I /O
dr iver modules , each o f wh ich prov ides the same expor ted pro
cedure names. These modules a l low the debugger to run on an
emu la to r , o r on rea l ha rdware w i th the Mode l 520 ' s keyboard
and i ts var ious display opt ions, or v ia an ASI or mult ip lexer card
connected to a dedicated termina l .

Acknowledgments
Severa l peop le cont r ibu ted to the deve lopment o f the debug

ger. seven Til lson developed the original concepts and f irst seven
revis ions, Dan Osecky and Bob Bury provided operat ing system
support, Fred Richart contr ibuted to the ini t ial disassembler, Mar
ce l Meier prov ided I /O dr iver ass is tance and cont r ibuted to the
i n i t i a l d i s a s s e m b l e r , a n d G a r y F r i t z d e v e l o p e d t h e l o w - l e v e l
execut ion monitor.

â€¢Alan Silverstein

so that they can be restored before the process resumes.
The interrupt handler writes the device number of the

device requesting service onto the interrupt control stack
at a known location. The device number serves as an index
into the device reference table, which contains an entry
for each I/O channel. The device reference table entry for
a requesting I/O device is chained by an I/O processor onto
a queue corresponding to the priority of the device to await
service by a CPU. Each device reference table entry contains
a pointer to the interrupt service routine, and a pointer to
the data relevant to that I/O channel.

The SUN operating system contains a single main inter
rupt service routine. Device driver procedures are executed
by system and user processes as a result of input/output
requests. When a device driver procedure wants to wait
for an interrupt, the procedure calls a special operating
system primitive which executes a DOWN operation on a
semaphore associated with the device, thereby blocking
the executing process. The interrupt service routine does
an UP operation on a semaphore associated with the device
driver procedure that handles interrupts for the interrupt
ing device, and thus unblocks the process which had been
waiting for the interrupt. The interrupt service routine exe
cutes an IXIT instruction which may force the execution of
the dispatcher if the freed process is of higher priority than
the currently executing process. If the unblocked process
is not dispatched, then the state of the interrupted process
is restored and its execution continues.

The hardware detects 45 different traps, or exception
conditions. These traps are catagorized into seven classes
by the operating system to make exception handling more
manageable. The seven classes are system, address, pro
gram, instruction, stack overflow, trace, and debug traps.
System traps include absent segment and absent page traps,
and other traps that support virtual memory.

The trap manager component enables traps other than
system traps to be handled by the higher-level subsystems
in a hierarchical manner. Trap handling routines can be
specified that apply to a specific process, to all processes
in a given partition, or to all processes in the system. Trap
handlers installed at the process level have the option of
either handling the exception and returning to the inter
rupted process or referring the trap to the partition level.
Similarly, partition level trap handlers can optionally refer
handling to the system level.

Protection
The subsystems supported by the SUN operating system

benefit from the protection of system integrity supported
by the hardware as well as the protection provided by SUN
itself. The protection provided by the hardware falls into
three categories: segment bounds checking, mode checking,
and segment attribute checking.

All segment (data or code) references are checked by the
hardware to ensure that the references are within the
bounds of the segment. Furthermore, any attempt to write

MARCH 1984 HEWLETT-PACKARD JOURNAL 33

© Copr. 1949-1998 Hewlett-Packard Co.

to a segment is checked to ensure that the segment is writ
able. All segments also have an attribute that indicates if
the segment can be accessed by code that is designated as
unprivileged. This prevents user processes from directly
executing code that is strictly for internal system use. Any
violations are detected by the hardware and cause traps.

The operating system provides protection beyond that
provided by the hardware by providing an independent
partition segment table for each user partition context. Seg
ment accesses within a partition are limited to segments
within the system segment table and to segments within
the segment table local to the partition. In addition, SUN

provides addressability checks at critical points in the
execution of its procedures.

Acknowledgments
Several people contributed to the development of the

SUN operating system. Among them, the major con
tributors were Marcel Meier, Bob Bury, Charlie Mear, and
Bob Lenk.

Reference
1 . J.G. Fiasconaro, "Instruction Set for a Single-Chip 32-Bit Proces
sor," Hewlett-Packard Journal, Vol. 34, no. 8, August 1983.

The Design of a General-Purpose Multiple-
Processor System
by Benjamin D. Osecky, Dennis D. Georg, and Robert J . Bury

ALTHOUGH A NUMBER of earlier Hewlett-Packard
products have contained multiple-processor config
urations, none has been able to bring the full power

and flexibility of these processors to bear in solving user
problems. For instance, the HP 9845B Computer contains
an identical pair of 16-bit processors with shared memory.
However, the system architecture constrains one processor
to handle the computational parts of a user's program while
the other processor, which accesses only the I/O bus, man
ages the input/output and other operating system functions.
Although this partitioning of functions provides a perfor
mance advantage over a single processor for applications
in which the requirements for I/O and computation are
relatively balanced, the configuration does little to improve
the performance of strictly computational or mostly I/O-
oriented workloads.

Many other multiple-processor systems exhibit forms of
asymmetry between their computation and input/output
functions which are a result of either their hardware or
their software architecture. On some systems a particular
I/O device can be accessed by only a subset of the proces
sors. Communication with such a device requires either
complex communication protocols between the asymmet
ric processors or constrained execution of the user program
on the processor subset. Other multiple-processor systems
allow only a single processor at a time to execute operating
system code.

Hardware Design
The hardware architecture of the HP 9000 Series 500

Computers has been designed to provide for a fully symmet
ric multiple-processor architecture. All CPUs, I/O proces
sors, and memory controllers are interconnected by the
memory processor bus. All I/O processors and memory are

identically addressable by all CPUs. This implies that a
program can execute on any of the system's processors
without any changes to the way the system addresses either
memory or I/O devices. Perhaps equally important is the
fact that all I/O processors have an equally symmetric view
of CPUs and memory. This makes it possible for a program
to initiate an I/O operation on one processor, for the inter
rupt service routine to execute on the same or a different
processor, and for the user program to continue on a third
processor, all with complete transparency.

This symmetry is also exploited to improve system relia
bility. When the system is turned on, the processor compo
nents perform a self-test and report their results to one of
the processors which is temporarily designated as a master.
This master CPU begins the execution of operating system
code that determines the number of system components
that have passed their self-tests and configures the system
based on these working components. Once the system has
been configured, the distinction of the master CPU is can
celed and the system begins normal operation, except for a
possible loss of capacity caused by any failed components.

For a multiple-processor system to be able to deliver a
significant performance improvement over a single proces
sor, each processor in the system must be provided with
sufficient bandwidth to the system memory. In the HP 9000
Series 500 Computers, the memory processor bus provides
a bandwidth of 36M bytes per second. The memory con
trollers are fully pipelined and are capable of responding
to arbitrary reference strings at this maximum bandwidth.
Measurements of the bandwidth consumed by a single
Series 500 processor indicate that the average consumption
is approximately 9M bytes/s.

Another important hardware characteristic is a test-and-
set operator that is atomic (indivisible) with respect to mul-

34 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

S e g m e n t T a b l e Process Stack

Task Control Block

User Code
Segment Table

User Data
Segment Table

S t a c k C D S
S e g m e n t S e g m e n t
Number â€¢ Number

SB

Fig. 1 . Process s tate as seen by
the Ser ies 500 hardware.

tiple-processor execution. This operator is provided by the
memory controller to allow the execution of a special re
quest that indivisibly reads and sets a selected word in
main memory to a predetermined value. This operator
serves as a building block for constructing more complex
synchronization operators in software. This hardware
operator is also used by the CPUs when accessing certain
table structures known to the hardware, such as page tables.
This allows synchronization of access among processors,
and between processors and the operating system software,
called SUN, when the table entries must be modified.

Another important characteristic is the ability to share
the same image of an executing program between two or
more processors. This is done by providing an architecture
in which all code is reentrant. Code is protected from mod
ification by the hardware. This allows a single image of
the operating system to be shared by all processors in the
system and also allows several processors to be active in
the operating system code simultaneously.

Finally, since the SUN operating system was designed
at the same time as the hardware, it was possible to make
many hardware/software tradeoffs to improve the perfor
mance of SUN. The processor instruction set provides con
siderable assistance by saving and restoring process states
during process switching. Fig. 1 illustrates the process state
known by the hardware. The task control block is selected
by a processor register. Information contained in this block
identifies a process' address space, stack segment and
global data segment through either system or user segment
table entries. The process stack contains information at its
base that allows setting the stack limits and the current
frame pointer. Absorbing the topmost stack frame allows
information about the process' code segment and register
state to be established. This entire procedure is accom
plished by the IXIT instruction. This instruction and the

complementary state-saving operations combine to provide
fast process context switching times.

Software Design
Each process in the system has its own task control block

and stack segment. The information contained in the task
control block includes process state information which is
known to the hardware as well as an extended process
state maintained by the system software. The state informa
tion known to the hardware includes the specification of
the user's address space, stack, and global data segment as
described above. The software state includes the process
priority, its dispatching state, fields to allow the process
to be queued on a semaphore, a specification of action to
be taken in the event of an exception condition, and a list
of objects owned by the process.

The process priority indicates the relative priority of
execution of nonblocked processes. The highest-priority
process not blocked on a semaphore is always allocated a
processor. If a lower-priority process is running and a
higher-priority process becomes ready because of some
event such as the completion of an I/O operation, the lower-
priority process is suspended and the higher-priority pro
cess is given a processor. This mode of scheduling in which
a higher-priority process can preempt a lower-priority pro
cess is referred to as preemptive scheduling. The system
software was designed to be preemptable in all but a few
small code sections.

The dispatching state indicates whether a process is wait
ing on a semaphore or a timer, ready for execution, or
already running on a processor. The address space indi
cates which virtual address space contains the memory
objects local to the process. System processes often coexist
within the same address space and communicate directly
using shared-memory techniques. User processes for both

MARCH 1984 HEWLETT-PACKARD JOURNAL 35

© Copr. 1949-1998 Hewlett-Packard Co.

HP-UX and BASIC systems each exist within their own
address space, which can be up to 512 megabytes. Every
process also has access to the system address space, which
can also be as large as 512 megabytes.

Three different mechanisms are provided to allow the
synchronization of process activities: locks, semaphores
and message passing. A lock provides the short-term ex
clusion mechanism normally provided by disabling inter
rupts while in a critical section on a single-processor sys
tem. This same effect is accomplished on a multiple-proces
sor system by performing a special code sequence on a
memory word, referred to as a lock word, that is associated
with the critical section in question. The exclusion opera
tion is performed by executing the instruction read and set
to -1 and testing the result. If the result is not equal to
minus one, the lock has been obtained and the critical
section can be executed. If the lock value is already minus
one, the processor must retry the indivisible read and set to
-1 instruction until a nonnegative value is read. It is then
assured that no other processor is active in the critical
section. When the processor has reached the end of the
critical section, it stores a zero back into the lock word to
indicate that the critical section can now be entered by
another processor. This locking mechanism is used many
places in the system where exclusion is required for a code
sequence that is short and does not execute any operations
that cause the process to be blocked.

A more general process synchronization tool is provided
by semaphore operations. The implementation of sema
phores is similar to that proposed by Dijkstra.1 A semaphore
is a two-word area in memory that contains a value and a
pointer to a linked list of processes. Semaphores can be
allocated in memory anywhere that other data structures
can be allocated, and there is no limit on the number of
semaphores. Two operators are provided for semaphores:
DOWN and UP. A DOWN operator applied to a semaphore
with a value greater than zero merely decrements the value
associated with the semaphore. If the value is less than or
equal to zero, the value is still decremented, but the process'
state is marked blocked and the process' task control block
is added to the queue of waiting processes associated with
the semaphore in order of priority. The UP operator incre
ments the value of the semaphore. If the initial value of
the semaphore is less than zero and an UP operation occurs,
the first process waiting on the queue is marked as ready.
If the process marked ready is of higher priority than the
process executing the UP operator, the processor is given
to the higher-priority process.

Serialization can be provided for a critical section by
associating with it a semaphore initialized to a value of
one and providing a DOWN operator at the beginning of the
critical section followed by an UP operator at the end of
the critical section. Synchronization with a server process
is usually accomplished with a semaphore initialized to a
value of zero.

The word used as the head of the queue of tasks blocked
on a semaphore also serves as a lock word to guarantee
proper operation of the semaphore in a multiple-processor
system. Since there is a separate lock word for every
semaphore in the system, the probability of contention for
the lock is very low.

During development of the software, it was found that
considerable simplification would result by including ad
ditional semaphore operators. The first consisted of a con
ditional UP operator which would free all processes waiting
on a given semaphore and allow the passing of an error
escape code. This operator is especially useful in recover
ing from an error condition detected by another process.
The second consisted of an indivisible DOWN and UP
operator which would allow a process to block itself on a
semaphore while releasing another semaphore in one indi
visible operation.

Message passing supports interprocess global communi
cations by allowing a process to construct a packet of infor
mation called a message, send that message to a mailbox,
and have a different process at a later time receive the
message from the same mailbox. Message passing and mail
boxes are used by both BASIC and HP-UX system processes
to coordinate user processes. Sending and receiving mes
sages provides process synchronization similar to the
semaphore UP and DOWN operations, coupled with an ad
dress-space-independent data transferral. The message
passing operations, in fact, are implemented using the
semaphore operators, which in turn use the locking concept
at the lowest level.

Dispatcher

â€¢ Save Rest of State
â€¢ Move Task Control Block

to Queue End
â€¢ Unmark as Running

Set Up Dummy Low-
Priority Task Control

Block

Search Queue for Runable
Task Control Block

Found

Not
Found Release DISP Lock

Mark Task Control Block
Running, Restore State

Release DISP Lock

Fig. 2 . D ispatcher f low char t .

36 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

1 . 5

1 . 0
2 3

N U M B E R O F C P U ' S

Fig . 3 . Mu l t ip le -p rocessor per fo r
mance wi th a homogeneous load.
Each benchmark run cons i s t s o f
m u l t i p l e i d e n t i c a l c o p i e s o f t h e
same program.

Granu la r i t y
The duration of a typical process lifetime in HP-UX,

which can last from a few tens of milliseconds to forever,
is well matched to the granularity of the underlying process
model. The BASIC system's process model similarly is of
reasonably large granularity. The times for representative
operations for the underlying process model are:

Operation
Process Creation
Lock Type Synchronization
Semaphore Operation
Process Switch
Assign Free Processor

Time (/us)
1000

5
35
150
100

To illustrate how the overall process model is im
plemented, consider the flowchart of the dispatcher shown
in Fig. 2. When a DOWN synchronization operation dictates
a process block, the process is marked blocked and the
special instruction DISP is executed. This causes the pro
cess state to be saved and control to be transferred to the
beginning of the short-term scheduler routine at the dis
patcher entry point. Upon entry, the dispatcher ensures
that just one processor at a time is active within the critical
section of the dispatcher by attempting to lock a word

" I n t h i s a r t i c l e , g ranu la r i t y i s a measu re o f t he s i ze o f i ndependen t ope ra t i ons t ha t a
p rocess o r a p rog ram can be b roken up in to fo r pa ra l l e l p rocess ing . In each case , the
per formance benef i ts ga ined by para l le l process ing must be weighed against the system
overhead required to break up the process or the program. That is, f iner granularity requires
more overhead

E F F E C T I V E C P U ' S
4 . 0

3.5

3.0

2 . 5

2 . 0

1.5

1 . 0

3 F L O A T I N G
1 P C A L

2 F L O A T I N G
2 P C A L

1 F L O A T I N G
3 P C A L

2 F L T , 2 I N T
2 S T R 1 6 K

4 F L O A T I N G
1 S T R I N G 1 6 K

N U M B E R O F C P U ' S

F i g . 4 . P e r f o r m a n c e o f b e n c h
mark runs contain ing nonident ical
process loads.

MARCH 1984 HEWLETT-PACKARD JOURNAL 37

© Copr. 1949-1998 Hewlett-Packard Co.

associated with that critical section. Once inside the critical
section, the dispatcher scans the linked list of available
processes using a special hardware linked-list search in
struction. The highest-priority process that is not blocked
and is not currently running on another processor is
selected for execution. The dispatcher's lock word is re
leased and the process is launched by setting the the CPU's
current task control block pointer to point at the selected
process. The context switch is completed by executing an
IXIT instruction as described earlier. This results in the
restoration of the state of this task and its continued execu
tion until it is either blocked or is preempted.

If no tasks are found that are available for execution, the
dispatcher's lock is released and the special instruction
SLEP is executed. SLEP places the processor in a state where
it is paused until the next interrupt or interprocessor mes
sage. In this way processors that have no work to do con
sume no bus bandwidth, yet are prepared to respond
quickly when an event indicating the possible presence of
a new runable task occurs.

Performance
The final test of the design of any multiple-processor

system is in how much improvement in performance is
provided by each additional processor. Fig. 3 shows the
results of a number of benchmark runs which were made
by running four copies of an identical benchmark on each
of four processor configurations. The programs were
selected to show the performance extremes that can be
encountered in a multiple-processor system load. The pro
grams showing the least improvement were STRING 16K
and STRING BOB. These programs make use of the proces
sor's block-move instructions, which are capable of moving

data from one place in memory to another at the rate of
9M bytes/s. Large and repeated block moves place a heavy
load on the memory processor bus.

The two-dimensional graphics benchmark is mostly I/O-
bound on a single processor and adding additional proces
sors does not produce a very dramatic result. The other
benchmarks, 3D GRAPHICS, INTEGER, PCAL, and FLOAT
ING, are respectively a three-dimensional graphics program
with I/O, an integer matrix multiply program, a very heavily
recursive program, and a floating-point matrix multiply
program. All of these loads are significantly improved by
having additional processors in the system.

Fig. 4 shows the results of tests in which groups of
nonidentical processes were run on systems containing a
varying number of processors. The results from these runs
are more uniformly clustered near the theoretical n-im-
provement-for-n-processors asymptote. This indicates that
a significant improvement is possible even for loads includ
ing bandwidth-intensive programs such as STRING 16K as
long as they are included with programs containing more
typical instruction mixes.

Acknowledgments
We would like to acknowledge the efforts of Mike Kolesar

and Jim Fiasconaro whose careful attention to the design
of the multiple-processor aspects of the hardware made
life much easier for the software team. We would also like
to thank Bill Eads for letting us work on this project.

Reference
1. E.W. Dijkstra, "The Structure of the THE-Multiprogramming
System," Communications of the ACM, Vol. 11, no. 5, May 1968,
pp. 341-346.

An I /O Subsystem for a 32-Bi t Computer
Operat ing System
by Robert M. Lenk, Char les E. Mear , Jr . , and Marcel E. Meier

MEETING THE DIVERSE NEEDS for input/output
processing for both the BASIC and HP-UX subsys
tems in the HP 9000 Series 500 Computers posed

a significant challenge during the design of the operating
system called SUN. The BASIC language system for the
Model 520 Computer provides a rich I/O language with
support for real-time device and instrument control. HP-UX
is a multiuser system which relies very heavily on rapid
access to disc storage for loading user programs, storing
user data, and managing virtual memory. In addition, both
systems provide users with a unified, device-independent

I/O interface to all peripheral devices and mass storage
files. SUN's I/O subsystem provides common code that
fully supports the needs of both.

The SUN I/O system consists of two primary software
components â€” the file system and the device drivers. The
device drivers provide a uniform high-performance inter
face for managing peripherals while the file system pro
vides file management, disc memory management, and de
vice management services to other components of the
operating system as well as to user environments such as
HP-UX and BASIC. In general, the structure of the I/O sub-

38 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

Software
Hardware

D i r e c t o r y M a n a g e m e n t F i l e M a n a g e m e n t

Second-Level Driver

First-Level Driver

I O Primitives

I O Processor (IOP)

Interface Cards

Peripheral Devices

D i r e c t o r y S t r u c t u r e F i l e s

system (Fig. 1) mirrors the functionality of the hardware.

File System
The basic unit of disc storage managed by the file system

is called a volume. Each volume has a slave process that
performs all the I/O to the volume. The creation of a sepa
rate, transparent process allows physical I/O to be per
formed concurrently with other tasks and provides a
mechanism whereby I/O requests can be scheduled in the
most efficient manner possible. Volumes have self-con
tained data structures upon which files and directories are
implemented. Directories, which map filenames into files,
are managed solely by the file system while the interpreta
tion of the contents of files is left to higher-level software.
Multiple Disc Formats. The file system supports file man
agement of three different disc formats: HP's Logical Inter
change Format (LIF), the disc format used by the HP 9825,
HP 9835, and HP 9845 family of computers, and the Struc
tured Directory Format (SDF). The support for multiple
disc formats was motivated by the desire to provide file
interchange capability with other HP systems, to access
discs initialized on earlier HP computers (backward com
patibility), and to provide additional capability not sup
ported by either the LIF or HP 9845 formats. The support
for multiple disc formats does not introduce additional
overhead to the file system.

A distinct software module manages each of the three
formats. A common interface hides the disc format differ
ences from other file system software and the BASIC sub
system. When a disc is first accessed, the file system iden
tifies the disc by the contents of block 0 on the disc and
installs the correct software module to manage its structure.
The file system returns an error if the caller attempts to
use a feature not supported by the particular disc format,
but otherwise no distinction between formats can be made
by the application. Because of its extended capability, HP-
UX supports only SDF as its root file system. However,
HP-UX applications can access LIF discs through standard
utility programs.

SDF supports capabilities beyond those of the other two
disc formats. Among them are extensible files, hierarchical
file naming, file links, extensible directories, mounted vol
umes, device files, remote file access support, and HP-UX
file protection mechanisms.

Each file on an SDF volume is described by a 128-byte
file control block (FCB), similar to the UNIXâ„¢ inode. The
UNIX is a US t rademark o f Be l l Labora tor ies

File System

Drivers

F i g . 1 . T h e S U N o p e r a t i n g s y s
tem's I /O subsystem.

FCB contains information about where the file resides on
the disc, when it was last created, accessed, and modified,
and how its use should be restricted. Disc space is allocated
to the by in contiguous areas called extents (identified by
the address of the first block of the disc area and its size).
This form of representation enables large, high-speed trans
fers between the disc and the memory, supports large files
efficiently, and allows the amount of disc space allocated
to the file to change dynamically.

To support the needs of both the BASIC and the HP-UX
systems, a portion of the FCB is reserved for private use
by the subsystem that created the file. HP-UX, for example,
uses this private data area to implement device files and
HP-UX-style file protection semantics.
Caching for Improved Performance. The file system uses
a pool of equal-size buffers (buffer cache) to improve disc
access performance. When data is read from the disc, it is
placed and kept in the buffer cache. When a subsequent
request is made for the same data, it can be retrieved from
the cache without requiring any physical I/O operation.
Accessing data in the cache is more than an order of mag
nitude faster than obtaining the same data from the disc.

The number of buffers in the cache is determined when
the system is initialized. Eventually the contents of one or
more buffers has to be discarded to read new data from the
disc (data not found in the cache). In this event, the cache
buffer that has been least recently accessed is chosen.

The cache is also used to improve performance in other
ways. When sequential access to a file is detected, the file
system prereads data from the file in anticipation of the
next read request. The data is then kept in the cache until
it is needed. The I/O required for the read is performed
concurrently with the running of the application program.
By prereading data, the file system overlaps CPU processing
with I/O device time, thereby reducing the total time it
takes to run an application.

A large portion of the time needed to move data to and
from the disc is spent waiting for the disc to prepare for
the transfer. The actual transfer of data takes much less
time. The file system transfers as much data as possible on
each disc read/write. When prereading data, several buffers
of data are read from the disc with one transfer. The cache
also allows a file's dirty buffers (buffers that must be written
back to the disc because their contents have been modified)
to be gathered together and written to the disc in a single
transfer.

MARCH 1984 HEWLETT-PACKARD JOURNAL 39

© Copr. 1949-1998 Hewlett-Packard Co.

Virtual Memory Support. Since many HP-UX systems are
configured with only one disc, the file system must handle
file management and virtual memory support together on
a single volume. Each disc format module has entry points
that the virtual memory system uses to allocate and deallo
cate disc blocks. These same high-speed disc space manage
ment routines are used by the file system to allocate disc
space for directories and files. Disc storage is fully shared
between the file system and the virtual memory system.
The physical I/O generated by the virtual memory system
as a result of paging and segment swapping does not move
through the cache, because the virtual memory system does
its own caching through sophisticated page and segment
replacement algorithms. This I/O is sent directly to a vol
ume's I/O process. The file system and virtual memory
system together support the concept of a memory-mapped
file. Files can be mapped onto a virtual segment and ac
cessed through a pointer. Once mapped, the virtual seg
ment contains an image of the file. Changes to the address
space represent changes to the file and vice versa. This
form of access is sometimes more convenient than standard
file access routines and can, in certain applications, result
in improved file access performance.
Transparent Device I/O. Transparent device I/O for HP-UX
is supported through device files, which contain informa
tion about the location of a device (possibly logical) in the
system, and the manner in which the device and system
must communicate. These special files are opened and ac
cessed in the same manner as other files. Their I/O, how
ever, is directed to the appropriate device.

Drivers
The underlying philosophy behind the driver architec

ture is that each piece of hardware is encapsulated by a
separate module. A typical I/O operation involves three
separate pieces of hardware: an I/O processor, an interface
card, and a peripheral device.1 Thus, the driver implemen
tation includes modules in three layers â€” I/O primitives,
first-level drivers, and second-level drivers. This allows
drivers to be mixed and matched for appropriate tasks with
out duplicating functions. Thus, all peripherals, whether
discs, tape drives, line printers, or voltmeters, can share
the same HP-IB (IEEE 488) interface card first-level driver,
while a single CS-80 protocol second-level driver can suf
fice both for HP-IB-based discs and the internal discs on
the Series 500's integrated workstation, the Model 520 (see
Fig. 2). Because of this modularity, the potential also exists
to move any first-level driver to other machines where the
same interface cards are present on different I/O channels,
or to move any second-level driver to other machines where
the same peripherals use different interface cards.

Each of the three layers invokes the one below it through
a procedure call. This keeps the overhead of the modulari
zation to a minimum. However, in special cases where
even this overhead is considered excessive, an individual
driver module crosses these conceptual layers to optimize
performance. A primary example of such an optimization
is a special driver to do fast reads and writes of CS-80 discs
on the HP-IB interface.

The modular driver organization allows software to be
configured to match precisely the hardware on which it

runs. A minimal software system contains only the I/O
primitives and the drivers necessary for a minimal
hardware configuration without wasting kernel code space
on unnecessary modules. As more hardware is added, the
corresponding drivers are added to the software. All global
system tables of drivers and devices are built dynamically
by the modules that are present at system boot, rather than
being compiled into a central part of the code or requiring
a complicated system generation activity. Hence, the addi
tion of drivers does not require any recompilation or relink
ing of the system; it is accomplished by simply merging
the driver code into the system boot area in HP-UX and
rebooting, or by executing the LOAD BIN command in BASIC.
The same ability to configure modules into the system is
used by the file system for the modules that manage differ
ent disc formats, and by other subsystems outside of I/O.
I/O Primitives. The primary purpose of the I/O primitives
module is to encapsulate the interface to the I/O processor
and the services it provides. These services include direct
memory access (DMA) transfers across the backplane, pass
ing interrupts to the CPU, and running channel programs
(lists of I/O operations which are run by the I/O processor
without CPU intervention). These services are presented
to the drivers as routines that are independent of the nature
of the I/O processor, such as setting up a DMA transfer or
waiting for the interrupt at its completion. A few of these
routines that are simple but frequently executed are im
plemented with special compiler support by in-line expan
sion in the calling driver's code.

There are other tasks which, though not directly related
to the I/O processor, are common to several drivers, and
thus are also included at the primitives layer. For example,
the primitives module examines all I/O slots at system in
itialization to determine which interfaces are present. This
is an essential part of the self-configuration process, be
cause it allows each first-level driver to select which in
terface cards are appropriate for it to address without
any knowledge of the behavior of other cards that may
be present.

The primitives also provide for resource allocation
among drivers to prevent multiple requests from interfering
with one another. This is generally handled by providing
mutual exclusion to each I/O slot, but it also involves the
length of request. For shorter requests, interfaces such as
terminal multiplexers allow multiple outstanding requests
with certain restrictions, which are enforced by the primi
tives. For longer requests, each I/O processor has

Voltmeter Access User Disc Access

CS-80 Disc Driver Chosen based on the I /O card
â€” seen in the specified slot

CIO HP- IB Dr iver â€¢ Internal Model 520 Disc Dr ive

CIO HP-IB Card

CS-80 Disc Drive

Fig . 2 . Dr iver s t ruc ture for HP 9000 Model 520 Computer .

40 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

bandwidth limitations, and in rare instances it is possible
for a high-speed device to lock out a synchronous device
on a separate slot. The primitives provide mutual exclusion
between such incompatible devices on the same I/O proces
sor.
HP-CIO. The HP 9000 Series 500 Computers are the first
HP products to support HP's new family of interface cards,
known as HP Channel I/O (HP-CIO). Each card in this family
shares several levels of protocol, some of which communi
cate fairly complex tasks between the host computer and
a microprocessor on the card. The card's microprocessor
can perform such tasks as searching input streams for a
termination character, or editing lines of text input from a
terminal. Much of this protocol is encapsulated at the
primitives level, allowing not only a sharing of code among
drivers, but also efficient implementation of the protocol
by matching it carefully to the I/O processor's functionality.

The I/O primitives level provides a useful layer to insu
late the drivers from the I/O processor. Hence, all the inter
face card and peripheral drivers can be written in MODCAL
(HP's internal Pascal-like systems programming language)
rather than being forced to use assembly language. This
encapsulation of the assembly language in the I/O primi
tives reduces the time required to design, code, test, and
maintain the driver compared to programming in assembly
language. The reliablity of the drivers is greatly improved,
because it is easier to understand the code and its function
when the code is in a high-level language.
First-Level and Second-Level Drivers. The first-level and
second-level drivers are designed to hide the anomalies of
the peripherals and interface cards while providing all the
functions that each device provides (e.g., full access to the
instrumentation features of the HP-IB interface).
Nonspecific device features are relegated to higher levels
of the I/O hierarchy to prevent duplication of functions
that would increase the overall size of the I/O subsystem,
reduce performance, or possibly present inconsistent be
havior for different drivers. In addition to encapsulating
the specific peripheral or interface card characteristics to
provide access to a generic device, the driver design pro
vides access to rather dissimilar devices (e.g., discs and
HP-IB interface cards) with the same parameters for either
the first- or second-level driver procedures. This uniformity
provides the first step in supplying the user with a totally
device-independent I/O interface.

The SUN operating system drivers also provide ex
tremely resilient recovery from error conditions. They have
been through a thorough set of tests to ensure that the
drivers never leave the device they control or leave the
system in a bad state (requiring a power cycling of the
computer or device) as a result of any possible error condi
tion. Extra effort was taken to provide a broad resolution
of error conditions reported to the system rather than com
bining many different errors into generic error values. The
drivers also provide numerous different soft-error reports
to inform the user of nonerror related data such as the
occurrence of an automatic data record sparing (replace
ment of a bad record with a good record) on a mass storage
medium or a case where the system had to retry an access
to a data record to obtain it without an error. This additional
resolution and the soft-error concept provide the user with

a more informed view of the operation of the system instead
of requiring a guess as to what is going wrong.

HP's earlier desktop computers have always provided
access to the hardware registers on the I/O cards to provide
customers with access to features not provided by the I/O
language of their system. However, the new-generation HP-
CIO cards are far more complex to program and in addition,
do not have conventional registers. Thus, the SUN drivers
provide a synthesized set of registers, called pseudoregis-
ters. This provides the user with the same model as on the
HP 9845 Computer for accessing features of an I/O card not
normally provided by the system, but done in cooperation
with the driver. Thus, the driver has the opportunity to
provide additional functions in an isolated manner. This
allows the same pseudoregisters to be used for different
implementations of the same type of interface card, which
increases the portability of user applications.

The SUN drivers support the broad set of peripherals
produced by Hewlett-Packard. Instead of initially supply
ing a core set and then adding less-essential drivers at a
later time, SUN provides support for all peripherals that
make reasonable sense for the HP 9000 marketplace. One
additional driver that is somewhat unusual is the mem
ory driver. This driver uses the main memory of the running
system to simulate a disc drive. The code required to pro
vide this driver is a great deal simpler than if this function
were provided at a higher level. The result is that a user
can develop an application that accesses a disc file and
then decide to store the data in main memory to gain the
performance advantage of not having to spend the time to
access a disc drive. The change is trivial using the memory
driver; simply revise the reference to the specific mass
storage device to be the memory driver rather than the
original disc drive.

Acknowledgments
Gary Fritz did the initial implementation of the I/O primi

tives, David Frydendall implemented the serial and 16-bit
parallel card drivers, Mark Hodapp tested the file system,
Dan Osecky assisted in the implementation of the I/O primi
tives, and David Pinedo tested the HP-IB and nine-track
tape drivers and implemented the CIPER protocol printer
driver.

Reference
1. F.J. Gross, W.S. Jaffe, and D.R. Weiss, "VLSI I/O Processor for
a 32-Bit Computer System," Hewlett-Packard Journal, Vol. 34,
no. 8, August 1983.

MARCH 1984 HEWLETT-PACKARD JOURNAL 41

© Copr. 1949-1998 Hewlett-Packard Co.

Authors
March 1984

Michael L. Kolesar
Mike Kolesar studied
physics at Vi l lanova Univer
sity (BS 1 968) and nuclear
phys ics a t Corne l l Un iver
sity (MS 1 971). He came to

; > \ ^ y y f i / H P i n 1 9 7 4 w i t h t h r e e y e a r s
of experience in designing
h igh -speed da ta acqu i s i
t ion systems for a synchro
tron laboratory. Now a sec

t ion manager respons ib le for graphics sof tware
and HP-UX commands and languages, he contr i
buted to the arch i tec ture and microcode for the
Ser ies 500 CPU ch ip and managed some o f the
Ser ies 500 sof tware groups. He is coauthor of an
award-w inn ing paper on the Ser ies 500 CPU ar
chitecture. Born in Chicago, Il l inois, he is married,
has three daughters, and now lives in Fort Collins,
Colorado. He en joys downhi l l and cross-count ry
sk i ing , s te reo mus ic sys tems, pho tography , e lec
t ronics, and h ik ing in the Rocky Mounta ins.

Michael V. Hetr ick
Mike Hetrick began work at
HP in 1 973 and contributed
to the production of the HP
9 8 3 0 C o m p u t e r a n d d e
ve lopment o f the HP 9815
and HP 250 Computers. He
was pro jec t manager fo r
the data base management
and ope ra t i ng sys tem po r
tions of the HP 250. An R&D

section manager since 1 979, he has been respon
s ib le for the deve lopment o f the h igh-speed HP
9845 Computer , the Mode l 530 and Mode l 540
Computers of the Ser ies 500, and most recent ly ,
the first HP-UX products for the HP 9000 computer
family. Born in Milwaukee, Wisconsin, Mike studied
electr ical engineer ing at General Motors Inst i tute
(BSEE 1 969) and the University of Colorado (MSEE
1970) . He is marr ied, has two sons and two
daughters, and l ives in Loveland, Colorado. He en
joys racquetball , Softbal l , and camping, and plays
c lar inet in the Loveland Munic ipa l Band.

Jef f B L indberg
Join ing HP in 1976 wi th a
BSEE degree awarded by
the University of Nebraska,
Je f f L indberg worked on
opera t ing sys tem des ign
for the HP 250 Computer
and the HP 9000 Series 500
HP-UX product , for which
he is now project manager.
He received an MS degree

in computer sc ience f rom Co lo rado Sta te Un iver
s i ty in 1982. Jef f is marr ied, has a son, and l ives
in Fort Col l ins, Colorado. Outs ide of work, he is a
vocal soloist and enjoys playing golf and basketball
and spending t ime wi th h is fami ly .

Scot t W.Y . Wang
I Scott Wang studied electr i

cal engineering at the Mas
sachusetts Inst i tute of

Â¡ Technology (SBEE 1971)
I and the University of Michi-

> t f 9 t I T g a n (M S E E 1 9 7 2) . W i t h H P
' i l J L ' * f r | B s i n c e 1 9 7 2 , h e h a s c o n t r i b -

â€” uted to a number of HP
ME p roduc ts , i nc lud ing the HP

â € ¢ H H J ^ M H H 9 8 0 5 C a l c u l a t o r , t h e H P - 8 1
Computer, and the 1 6K NMOS ROM. He managed
the development of the HP 250 Computer's BASIC
opera t ing sys tem and OM250 App l ica t ions Pack.
He managed the HP-UX p ro jec t and the so f t
ware tools for the Series 500 and now is responsible
for developing HP-UX for the Series 200 Comput
ers. Scott is a member of the Computer Society of
the IEEE and lives in Fort Collins, Colorado. He is
married, has a daughter, and is interested in audio/
v ideo, home computers , and photography .

1 5

Timothy W. Ti l lson
A sof tware deve lopment
eng ineer a t HP's For t Co l
l ins Division, Tim Til lson
worked on the BASIC com
pi ler and human inter face
for the Series 500 Comput
ers. Tim is a member of the
A C M a n d h o l d s a n A B d e
gree in mathemat ics f rom
Brown Universi ty (1974)

and MS degrees in mathemat ics and computer sci
ence f rom Ohio State Univers i ty (1976 and 1978,
respectively). His studies resulted in three research
papers related to combinatorial mathematics. Born
in Houston, Texas, he now lives in Fort Collins, Col
orado. He is married (his wife is an English profes
sor) and actively interested in running, swimming,
reading, sof tware hacking, and the s tock market .

Richard R. Rupp
Â § i D i c k R u p p j o i n e d H P i n

1979 af ter receiv ing a BS
, degree in compute r sc i -
S ence f rom Michigan State

Un ivers i ty . He was a so f t
ware engineer work ing on
the BASIC front end for the

â€¢ Series 500 Computers be
fore leav ing the company
recently. A native of Detroit,

M ich igan, he is s ing le and l i ves in Denver , Co l
orado. He likes playing volleyball, water skiing, and
work ing wi th sta ined g lass.

Jack D. Cooley
A native of Mattoon, Illinois,
Jack Cooley a t tended the
nearby University of Illinois,
earn ing a BS degree in
physics in 1 966. He served
four years in the U.S. Air
Force, attaining the rank of
capta in, before cont inuing
his studies at the University
o f Colorado. He received

an MS degree in computer sc ience in 1972 and
then jo ined HP. Jack has worked on a number o f

BASIC language projects for various HP products,
inc lud ing the HP 9835, HP 9845, and Ser ies 500
Computers , the las t as a pro ject manager . He is
now a sof tware eng ineer ing manager for product
assurance at HP's Fort Collins Division. He is mar
ried, has two children, and lives in Fort Collins, Col
orado. Outside of work, he plays folk guitar and en
joys runn ing , h ik ing , camping , b icyc l ing , c ross
count ry sk i ing, and photography.

David M. Landers
Dave Landers grew up in
Indianapol is, Indiana, and
at tended Purdue Univer-
s i ty , receiv ing a BSEE de-
gree in 1973 and an MSEE
degree in 1974. He then
jo ined HP and has worked
on BASIC sof tware for a
number of HP computers â€”
the HP 9835, HP 9845A,

and HP 9000 Series 500. He also contributed to the
I/O ROM for the HP 9835 and HP 9845 and to the
LAN 9000 software. Dave is single, l ives in Fort Col
l ins , Co lorado, and en joys chess, h ik ing, c ross
country skiing, and playing Softball and basketball.

gg
John J. Balza

Born in Green Bay, Wiscon
s in, John Balza studied
electr ical engineer ing at
the Il l inois Institute of Tech
nology (BS 1971) and the
University of Wisconsin
(MS 1972) . He then came
to HP and has done code
development , product ion
eng ineer ing , ha rdware de

ve lopment , and ch ip des ign fo r severa l HP com
puter products. He managed the I/O ROM project
fo r the HP 9835-and HP 9845 Computers and
worked on te rmina l emu la to rs , da ta communica
t ions, and LAN 9000 before tak ing up h is cur rent
ass ignment re lated to network ing for personal
computers. John lives in Fort Collins, Colorado, is
married, and has two daughters. He enjoys playing
both the p iano and the s tock market .

James L. Wil l i ts
An R&D project manager at
HP's Colorado Networks
Operat ion, J im Wi l l i ts de
v e l o p e d d a t a c o m m u n i c a
t ions products for the HP
3000, HP 250, and HP 9000
Computers . He rece ived a
BS degree in mathemat ics
f rom Kansas Sta te Un iver
s i ty in 1967 and then

served fo r four years as a computer sys tems de
s ign engineer in the U.S. Air Force, at ta in ing the
rank of captain, before resuming his studies at Iowa
State Univers i ty . Af ter receiv ing an MS degree in
computer science in 1973, he joined HP. Jimwas
born in SedroWoolley, Washington, is married, has
a son and a daughter, and l ives in Loveland, Col
orado. He en joys golf, racquetball, downhill skiing,
and sai l ing h is Hobie Cat .

42 HEWLETT-PACKARD JOURNAL MARCH 1984

© Copr. 1949-1998 Hewlett-Packard Co.

H. Michae l Wenze l
Mike Wenzel holds the
BSEE (1969) and MSEE
(1971) degrees f rom the
Universi ty of Denver. His
first project after joining HP
in 1974 was deve lop ing
firmware for a raster printer-
More recent ly , he worked

^ ^ o n d a t a c o m m u n i c a t i o n s
and ne twork so f tware , in

c lud ing des ign o f t he message manager and a r
chitecture for LAN 9000. He currently is working on
new network archi tecture for the Ser ies 200 and
Ser ies 500 Computers . Before coming to HP, he
served five years in the U.S. Air Force as a contract
o f f icer for the space shut t le program. Mike was
born In Alton, Illinois, and now lives in Fort Collins,
Colorado. Married and the father of two daughters,
he is interested in music, hiking, stained glass, and
the use of computers in educat ion (he adv ises a
local grade school regarding networking and com
puter/software avai labi l i ty to students).

34
Vincent C. Jones

Vince Jones jo ined HP in
1979 . Now a p ro jec t man
ager, his group is responsi
ble for IBM and asynchron
ous connect ions to the HP
9000 Computers . Before
coming to HP, he specif ied
computer ne twork access
and remote sens ing sys
tems for the U.S. Air Force

and was an occas iona l consu l tan t to smal l bus i
ness computer users. A graduate of Rutgers Uni
vers i ty (BA and BSEE, 1970), he cont inued h is
studies in e lectr ical engineer ing at the Univers i ty
o f I l l ino is for the MS (1972) and PhD (1975) de
grees. He l ives in Fort Col l ins, Colorado, wi th his
wife and three daughters and "enjoys family l ife in
the shadows of the Rockies."

Stephen D. Scheid
Born in Bryan, Texas, Steve
Schied was ra ised in
Phoenix, Arizona, where he
a t tended nearby Ar izona
Sta te Univers i ty and re
ce i ved a BS deg ree i n en
g ineer ing sc ience in 1975
and an MSE degree in elec-

Atrical engineering in 1978.
He then jo ined HP and

worked on QUERY/45 â€” a data base inquiry pro
gram, enhanced microcode for the HP 9845 Com
puter, and most recently, the virtual memory portion
of the Ser ies 500 operat ing system. Outs ide of
work, Steve is a volunteer instructor and trip leader
for the Boulder Mountaineering School. He is mar
r ied to another HP engineer, l ives in Fort Col l ins,
Colorado, and has a variety of petsâ€” among them
Amazon parro ts , which he breeds. An act ive out -
doorsman, he enjoys rock cl imbing, mountaineer
ing, cross-country and downhil l ski ing, snowshoe-
ing, and backpacking â€” last year he backpacked
more than 50 miles across Big Bend National Park
from east to west.

Denn is D . Georg
Born in Algona, Iowa,
Denny Georg s tud ied a t

^ ^ ^ ^ B A l o w a S t a t e U n i v e r s i t y , r e -
^ p 1 c e i v i n g a B S d e g r e e i n

mathemat ics in 1971 and
^ ^ t h e M S a n d P h D d e g r e e s i n

f c o m p u t e r s c i e n c e i n 1 9 7 3
and 1975. Af ter teaching
computer science for three

- * â € ¢ w Â » â € ¢ y e a r s , h e j o i n e d H P i n 1 9 7 8 .
He worked on HP 9000 software and managed the
SUN opera t ing sys tem kerne l p ro jec t be fore as
suming his current responsibil ity as an R&D section
manager. His work on the HP 9000 memory system
has resulted in two patent applications. A member
of the IEEE, the ACM, and the Planning and Zoning
Board of Fort Col l ins, Denny is marr ied and l ives
in Fort Collins, Colorado. He enjoys fishing, hiking,
amateur radio, sk i ing, and technical reading

Benjamin D. Osecky
Dan Osecky is project man
ager for HP 9000 operating
system software. Earlier, he
con t r ibu ted to the opera t
ing system for the HP 9835
Computer . He is coauthor
o f a paper on a se l f - con
f igur ing computer network
and coinventor for a patent
appl icat ion re lated to mem

ory management for the HP 9000 Computers. Dan
received BSEE (1972) and MSEE (1974) degrees
from Virginia Polytechnic Institute and State Univer
s i ty , before jo in ing HP in 1976. He was born in
Washington, D.C. , and is a member o f the ACM.
Married to another HP engineer, he lives in Fort Col
lins, Colorado, and is interested in amateur radio,
sc ience f ic t ion, h ik ing, and cross-country ski ing.

Robert J. Bury
â € ¢ m V - % A n a t i v e o f C h i c a g o , I l l i n o i s ,

Bob Bury studied computer
^ J ^ j f a B B s c i e n c e a t t h e U n i v e r s i t y o f

H * * " ^ ^ B P I l l l i n Â ° i s (B S 1 9 7 9) . H e j o i n e d
V A I H P i n 1 9 8 0 a n d h e l p e d d e -

â€¢ velop the SUN operating
f n y f t Â £ < * â € ¢ s y s t e m f o r t h e S e r i e s 5 0 0

J j j Ã ¯ Ã € f + r C o m p u t e r s . A m e m b e r o f
r the IEEE, he is married,

" f f Â ¿ / ' * . . - . l i v e s i n F o r t C o l l i n s , C o l
o rado, and en joys garden ing , photography, and
cross-country ski ing.

Charles E. Mear, Jr .
Char l ie Mear s tudied com
puter sc ience at Colorado
State Universi ty (BS 1977)
and the University of Texas
(MS 1979) before jo in ing

- - ^ i H P . H e w o r k e d o n t h e f i l e
\ Â £ ^ ^ ^ ^ s y s t e m f o r t h e S e r i e s 5 0 0
| B ^ ' C o m p u t e r s a n d c u r r e n t l y i s

working on the HP-UX ker-
B F / n e l f o r t h e S e r i e s 2 0 0 C o m
puters. Born in Midland, Texas, he now lives in Fort
Col l ins, Colorado, is s ingle, and is interested in
boardsai l ing, sk i ing, and gol f .

Marce l E . Me ie r
| ^ ^ B H H ^ H I M a r c e l M e i e r j o i n e d H P i n

1979 af ter receiv ing a BS
deg ree i n compu te r en
g ineer ing f rom Case West
ern Deserve University. He

IB worked on the opera t ing
I sys tems fo r t he Se r i es 500
I C o m p u t e r s b e f o r e b e g i n

n ing h is current work on
~P-UX for the Ser ies 200

Computers. He is a member of the ACM. A citizen
of both the U.S.A. and Swi tzer land, Marcel was
born in Manitou Springs, Colorado, and now lives
in Fort Coll ins, Colorado. An avid bicyclist, he en
joys touring and pedals to work year-round. He is
a lso interested in ski ing, h ik ing, sports cars, and
audio systems.

Robert M. Lenk
Bob Lenk's contr ibut ions
have resulted in two papers
related to a system for soft
wa re pe r f o rmance i n
strumentat ion. Joining HP
in 1981, he worked on the
I /O pr imit ives and local
area network serv ices for
the Ser ies 500. Now he is

Ã Ã I w o r k i n g o n t h e H P - U X k e r
nel for the Series 200 Computers. A member of the
ACM, he holds a BA degree in mathematics (1 975)
and an MS degree in computer science (1 981) from
the Univers i ty of Connect icut . Born in New York,
New York, he now l ives in Fort Col l ins, Colorado.
He is married and l ikes square dancing and cross
country ski ing.

4 4
Donald L . Hammond

D o n H a m m o n d w a s r e
cent ly named d i rector o f
Hewlet t -Packard
Laborator ies , Br is to l , Eng
land. He joined HP in 1 959
as manager o f the quar tz
crysta l depar tment , and in
1 963, he became manager
o f phys ica l research and
development. From 1966 to

1979, he was di rector of the Physical Electronics
Laboratory of Hewlet t -Packard Laborator ies, and
from 1979 unti l his move to England, he was direc
tor of the Physical Research Center of HP
Laboratories, with responsibil i ty for R&D in medical
and analyt ical instruments, computer peripherals,
factory automat ion, and l i thography. He is a
member of the American Physical Society, a fel low
of the IEEE, and a member of the National Academy
of Sciences evaluation committee for the U.S. Na
t ional Bureau of Standards and the U.S. Naval
Observa tory . He ho lds BS, MS and DSc degrees
in physics from Colorado State University. A native
of Kansas Ci ty , Missour i , Don is marr ied and has
five children. He served for ten years on the board
of t rustees of the Palo Al to, Cal i fornia Unif ied
School District, and has been a member of various
pres ident ia l , gubernator ia l , and indust ry com
mi t tees on educat ion and technology.

MARCH 1984 HEWLETT-PACKARD JOURNAL 43

© Copr. 1949-1998 Hewlett-Packard Co.

Viewpoints

Coping with Prior Invention
by Donald L . Hammond

THIS MONTH, HEWLETT-PACKARD is introducing a new
printer, the Thinkjet (HP 2225), which offers what we be
lieve is an unprecedented combination of features: 150

character-per-second printing speed, archival print on ordinary
paper, small size, quiet operation, and low cost â€” both initial cost
and total cost of ownership. Power requirements are so low that
one model is available with a battery pack that provides more
than three hours of printing, or about 200 pages. These advantages
have been made possible by a new ink jet printing technology,
which we have called thermal ink jet, or more picturesquely,
"Thinkjet," to differentiate it clearly from the more common kind
of thermal printing, which requires special paper.
We think the story of this technology development is an interest

ing example of what can happen in today's fast-moving technolog
ical environment. In our HP Laboratories at Palo Alto, in the fall
of 1978, John Vaught was looking for a new printing method that
would have the advantage of inherent simplicity compared with
the rather complex electrophotographic process used in the HP
2680A Laser Printer, for which John had designed the optical
scanning package.

He started with the idea of turning ink into vapor by high-speed
electrolysis and heating, using pressure to eject drops. When this
was found to work but with serious failure rates, he conceived
the idea of using a small resistor, which when heated for a few
microseconds by a current pulse, created bubbles, thereby ejecting
drops of ink from a nozzle. This was first demonstrated in March
1979.

We proceeded to develop this idea, amidst some skepticism that
the necessary performance and reliability could ever be achieved.
The Thinkjet printer is testimony that these concerns were dis
persed by extensive development work in several HP organizations
on the process and structure. One of the key concepts, originated
at HP's Corvallis Division, was a totally disposable ink jet head

with a self-contained ink supply.
It is not uncommon, when an important problem such as quality

printing receives the attention of many people, that independent
conception occurs in isolated research centers. Such was the case
with Thinkjet. In September 1981 we learned of the existence of
the same concept under development at Canon, Inc., in Japan.
Ichiro Endo had conceived the idea independently, with an earlier
invention date. Canon referred to the technology as "Bubblejet."

Since we in HP were convinced that this new technology had
great promise, the arrival of a new player in this arena caused
some concern as to our respective technical positions. There were
a number of options but the most attractive for HP was to work
with Canon. Excellent ties between the two companies had already
been tech as a result of our acquisition from them of tech
nology for electrophotographic printers several years earlier.

Hewlett-Packard and Canon have agreed to cooperate in the
technology development. Because this process started in 1983, the
sharing of technical data has had no major impact on our first
product release, but we can feel the positive effect that it is having
on our continuing developments. Canon has reflected to us similar
feelings. Working with a group that represents a combination of
cooperation and competition has provided a valuable perspective,
especially increased objectivity, for the technical and management
teams of both companies.

This experience has reinforced the principle that technology
alone can rarely make a significant contribution in this complex,
fast-moving world. There are equally valuable elements, some
times of the resolution of relationships in the spiri t of
international competition and cooperation, that can have dramatic
effects on our ability to bring that technology to the market.

We will be reporting in a future issue on more details of these
developments, including the Thinkjet printer.

Hew le t t -Packa rd Company , 3000 Hanove r
Street, Palo Al to, Cal i fornia 94304

RCH 1984 Volume 35 â€¢ Numb
I R N A L

Technical Informat ion from the Laborator ies of
Hewlet t -Packard Company

Hewlet t -Packard Company, 3000 Hanover St reet
Palo Al to, Cal i fornia 94304 U.S.A.

Hewlet t -Packard Central Mai l ing Department
Van Heuven Goedhart laan 121

1181 KK Amste lveen. The Nether lands
Yokogawa-Hewlet t -Packard L td . . Suginami-Ku Tokyo 168 Japan

Hewlett-Packard (Canada) Ltd.
6877 Goreway Dr ive, Miss issauga, Ontar io L4V 1M8 Canada

f * ^ L J A K I (^ T ~ / " \ C T A r \ T ~ \ I ") C l O O â € ¢ T
\ S F i r \ I N V J C . \ J I f ~ \ L J L J I I L _ O O . c

Bulk Rate
U.S. Postage

Paid
Hewlett-Packard

aC AGO

J O H N S H O P K I N S
L A U R E L

MD 20707

nge your address or de lete your name f rom our mai l ing l is t p lease send us your o ld address label . Send
c h a n g e s A l l o w d a y s . J o u r n a l , 3 0 0 0 H a n o v e r S t r e e t , P a l o A l t o , C a l i f o r n i a 9 4 3 0 4 U . S . A . A l l o w 6 0 d a y s .

5953-8521

© Copr. 1949-1998 Hewlett-Packard Co.

	A New 32-Bit VLSI Computer Family: Part II - Software
	Contrasting Project Management
	The Development of a BASIC Language Subsystem
	HP-UX: Implementation of UNIX on the HP 9000 Series 500 Computer Systems
	HP-UX: A Corporate Strategy
	An Interactive Run-Time Complier for Enhanced BASIC Language Performance
	Preserving Programming Investment
	A Local Area Network for the HP 9000 Series 500 Computers
	Data Communications for a 32-Bit Computer Workstation
	A General-Purpose Operating System Kernel for a 32-Bit Computer System
	Parallel Development of Hardware and Software
	A System Software Debugger
	The Design of a General-Purpose Multiple-Processor System
	An I/O Subsystem for a 32-Bit Computer Operating System
	Viewpoints: Coping with Prior Invention

